Chieh Lin (National Changhua University of Education)

FFF

June 14 - 16, 2024

KOTO and KOTO-II DAQ 2nd computing challenges workshop (COMCHA)

- particles (K_L^0, n, γ) are dominated.
- measure the missing P_T of π^0 .

DAQ challenges to study the K_L^0 **rare decays**

• High intensity K_L^0 beam is required. \rightarrow Triggers need to be processed fast.

DAQ challenges to study the K_L^0 **rare decays**

Backgrounds are also rare. → The waveform shapes are utilized to further suppress the rare background events. \rightarrow Entire pulses need to be recorded.

[Y.C. Tung, NIM A, 1059 (2024) 169010]

DAQ challenges to study the K_I^0 **rare decays**

Many accidental hits.

PIPELINE: Keynote of the KOTO trigger design

digitization Analog input

Non-stop

Homemade 125-MHz ADC

Uncertainties from delay cables are eliminated.

Upstream two-level trigger system

Level-1 trigger algorithm

Total energy (ET) calculation

Total energy is aggregated through Daisy Chains.

Level-1 trigger performance

• ET Loss is negligible. Veto loss is <1%.

Level-2 trigger: cluster-counting

System dead time = 0.16 μ s \Rightarrow Loss < 2% due to congestion (2024 run).

Architecture of the KOTO DAQ System

Event-building modul

- The board equipped with high-speed numerous optical links are commissioned to build KOTO events.
- The OFC-I board is expected to be the bottleneck of the system
- With two OFC-II boards, the loss is expected to be \$1% if the trigger rate is < 50k / (spill = 4.2 seconds).

U-Chicago homemade

OFC-II 9 QSFPs

GPU-based high-level trigger (HLT)

Spill nodes

High-Level Trigger (HLT) Performance Implemented in spring 2024

Trigger	HLT-input rate (Spring 2024 physics runs)	
$K_L \to \pi^0 \nu \overline{\nu}$	1.5 k/spill	
$K_L ightarrow 3\pi^0~$ (6 clus.)	2.0 k/spill	
$K^+ \to \pi^+ \pi^0$	5.7 k/spill	
$K_L ightarrow 3\pi^0$ (5 clus.)	4.2 k/spill	
$K_L \to \pi^0 e^+ e^-$	2.4 k/spill	
Others	1.9 k/spill	

17.7 k/spill (20.0 Gbps) Total

(Average over 4.2-sec spill)

Have a large room to be further tightened.

[Table courtesy of M. Gonzalez (ICHEP 2024)]

KOTO-II DAQ

Prototype of the KOTO-II ADC

A preliminary thought of the KOTO-II DAQ is to simply expand the KOTO DAQ architecture.

	ΚΟΤΟ	K
Digitization frequency & dynamic	125-MHz & 14-bit (majority)	500-M
range	500-MHz & 12-bit	
FPGA	Stratix II (Depth = 5.2 µs)	2 A (Depth ex
Optical links	2 x 2 Gbps X (2 SFP)	9 9 x (2 QS
#analog inputs	16 cha	annels

OTO-II (R&D)

- IHz & 14-bit
- Arria V $h > 10 \ \mu s$ is pected)
- 4 Gbps SFP + SFP

Prototype KOTO-II ADC (R&D at U-Chicago)

Better pulse separation in KOTO-II

Summary

- triggers.
 - (80kW beam).
- The 500-MHz ADC boards are vital to have a better pulse separation. \bullet

• The KOTO experiment adopts the pipeline design to accurately determine the

• The loss of <2% at 17.7k events/(spill-on = 2 sec) was achieved in spring 2024