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What else can we look for?

Spin Couplings - “new” magnetic fields
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Common phenomenology, focus on axions
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Relativistic boost, long
coherence time (~ 1000 s), but
lower phase resolution

Comparison with NMR
Searches
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Axion Dark Matter at Storage Rings

Proton @ magic
momentum, spin “frozen”

At magic momentum, spin locked
. to velocity - signal adds
o coherently form < 1/T

Cancellation for signals with m > 1/T

Could Resonate - choose momentum
detune velocity precession rate from spin
precession rate




Backgrounds

Effect

Remediation

Radial B-field.

Small effect.

Unwanted vertical forces when other than
magnetic focusing is present.

Small effect.

Dipole vertical E-fields.

Small effect.

Quadrupole E-field in the electric bending
sections.

Small effect.

Corrugated (non-planar) orbit.

Minimize effect with symmetric lattice design. F'i-
nally, keep the stored beams at zero average ver-
tical angle when integrating over the electric field
bending sections.

Longitudinal B-field.

The CW and CCW stored proton spins rotate in
same direction, while the (pseudo-)scalar fields
rotate them in opposite directions.

Geometrical phase effect due to lattice
elements imperfections.

Equivalent to a spin resonance due to lattice
elements imperfections. Magnetic quadrupoles:
beam-based alignment to lum rms. E-field
sections: Absolute beam position monitors to
<0.0Imm per injection.

Geometrical phase effect due to external
magnetic fields.

Equivalent to a spin resonance due to external
magnetic interference coupled with electric field
bending section misplacement.[25, 27] When the
local spin effects are kept below 1nT B-field equiv-
alent, the effect is negligible even for one direc-
tional (CW or CCW only) storage. In this polar-
ization case, the relevant fields and lattice mis-
placements may be in a different direction than
the previous table.

RF cavity vertical and horizontal misalignment.

Small effect.
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—1 <w < -0.95

Determine observationally. Test theory bias.

Constant A: No known natural mechanism to explain observed value

Possibly explained via dynamical evolution - imply changing A

Gravitational measurement. Can we do better in the lab?

Similar to laboratory detection of dark matter properties

Gravitational Measurements: dark matter is a cold, pressure-
less gas.
0/m < Cm2/gm

Does not mean o = 0. Can probe o ~ 1049 cmz? in the lab

What are the signatures of dark energy?
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What can the Dark Energy be?

w < -0.95 : Need fluid with free equation of state
parameter.
[sotropic and homogeneous

Reasonable Possibility: Scalar Field

ci>\ (Quintessence) 0 — Cbg |4
GV

Lagrangian for this scalar field?
m S H =10"" GeV

Ultra-light field. Demand technical naturalness => axion-like,
derivative interactions

LD CoH a}‘gbww%zp | Jib FF Spin Precession
Signal is completely DC

Kinetic Energy of Dark Energy <meV2  (park energy changes over
Direct Detection Hubble time)



Dark Energy at Storage Rings

Proton @ magic
momentum, spin “frozen”

—

O At magic momentum, spin
locked to velocity - signal
adds coherently

No cancellation since signal

frequency Is at least as low
as Hubble




Projected Sensitivity
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Lorentz Violation experiments also have
comparable sensitivity
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Monopole Dipole Forces
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Monopole Dipole Forces From Test Bodies

Precession Occurs near
local test mass

Choice of gradient direction

Spin precess out of plane,
In vertical direction

Interesting Handle: Fixed axion
gradient, particle and anti-particle
precess in same direction, unlike
electromagnetic background

Could also look for vertical
gradient from Earth




Sensitivity
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Assuming ~ 10 tons of lead bricks spread over ~ 10% of ring
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Conclusions

1. Storage Rings can be precision spin
Sensors

2. Technology well developed for electric
dipole moment searches

3. Synergistic searches possible for dark
matter, dark energy and monopole-dipole
forces
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Photons Dark Bosons

Early Universe:
Misalignment Mechanism
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Axion Dark Matter

Photons Dark Bosons
Early Universe: Today:
Misalignment Mechanism Random Field
V
2
'Y
a
E = Ejcos (wt — wx)
Dete.ct Photon by. a(t) ~ ag cos (Mmgt) Correlation length
measuring time varying ~ 1/(ma v)
field Spatially uniform, oscillating field

Coherence Time

~ | s (MHz/m,)

Detect effects of oscillating dark matter field

Resonance possible. Q ~ 106 (set by v ~ 10-3)
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CASPEr

Axion atfects physics of nucleus, NMR 1s sensitive probe
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SQUID =ard

pickup 22

loop
/ / / / ion “wind”

OR E*
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ext

Larmor frequency = axion mass =2 resonant enhancement

SQUID measures resulting transverse magnetization
NMR well established technology, noise understood, similar setup to previous experiments

Example materials: [.Xe, terroelectric PbT103, many others



