

CONCEPT STUDY OF A STORAGE RING-BASED GRAVITATIONAL WAVE OBSERVATORY

Storage Rings & Gravitational Waves – mini-brainstorm

Idea

•//•

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

- <u>Variation of circulation time</u> encodes GW signature
- Need: Particle on fixed circular trajectory in longitudinal free fall
- can circulate for minutes up to hours: mHz GW

a **very** precise clock

Frame of reference

metric for ring with fixed radius (cyl. coords): $ds^{2} = -c^{2}dt^{2} + (1 + h_{\theta\phi\psi}(t,\alpha)) R^{2}d\alpha^{2}$

Effective GW strain includes Earth's rotation:

$$h_{\theta\phi\psi}(t,\alpha) = h_+(t)(f_s^+ \sin^2\alpha + f_c^+ \cos^2\alpha + \dots) + h_\times(t)(\dots)$$

Euler angles enter via e.g.:

$$f_s^+ = (\cos^2 \theta \cos^2 \phi - \sin^2 \phi) \cos 2\psi$$

$$- (\cos \theta \sin 2\phi) \sin 2\psi$$

Particle in a Storage Ring

From geodesic equations:

$$\frac{d^2l}{dt^2} = -\frac{1}{1+h_{\theta\phi\psi}(t)} \frac{dh_{\theta\phi\psi}(t)}{dt} v_0$$

longitudinal acceleration

For fixed radius:

$$\mathbf{a}_{\parallel}(t) \approx -\dot{h}_{\theta\phi\psi}(t)v_0$$

$$\Delta T^{\text{fixed}} = \frac{\Delta l^{\text{fixed}}}{v_0}$$
$$= -\int_0^t \left(h_{\theta\phi\psi}(t') - h_{\theta\phi\psi}(0)\right) dt'$$

~ relativistic result

Main idea:

- GW strain as <u>classical force</u>
- Find <u>transformation</u> between <u>ring</u> with fixed radius and <u>storage ring</u> <u>simulation</u>
- Find reference to make noise terms comparable

For storage ring:

Particle in a Storage Ring

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

$\Delta T^{\text{fixed}} = -\frac{1}{\eta} \frac{1}{\gamma^2} \left(1 - \frac{v_0^2}{2c^2} \right) \Delta T^{\text{Ring}} - \left(1 - \frac{v_0^2}{2c^2} \right) \overline{h_{\theta\phi\psi}(t_0)} t$ "slip factor"

FAKULTÄT

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

Particle tracking I

Include longitudinal force

radial EOM:

Green's function approach:

$$x(s) = x_0 c_x(s) + x'_0 s_x(s) + \delta d_{x1}(s) + d_{x2}(s)$$

First-order EOM particle tracking: $x_{out} = M_{drift} \cdot x_{in} + \Delta x$

THORBEN SCHMIRANDER 10.02.2025

See: e.g. Wiedemann: Part. Acc. Physics, Springer (2015)

See: e.g. Wiedemann: Part. Acc. Physics, Springer (2015)

Universität Hamburg
DER FORSCHUNG I DER LEHRE I DER BILDUNG
Synchrotron Radiation
$$\vec{k}_{2}$$

 \vec{k}_{3}
 \vec{k}

$$\Delta x(\alpha_3,\ldots,\vec{k}_3,\ldots) = M_{\text{sector}}(\alpha-\alpha_3)\left(\cdots+\Delta_{\gamma}(\vec{k}_3)\right) - x_0(l)$$

$$x_1(l) = M_{\text{sector}}(\alpha - \alpha_1) \left(M_{\text{sector}}(\alpha_1) \cdot x(0) + \Delta_{\gamma}(\vec{k}_1) \right)$$

$$\Delta x(\alpha_3,\ldots,\vec{k}_3,\ldots) = M_{\text{sector}}(\alpha - \alpha_3) \left(\cdots + \Delta_{\gamma}(\vec{k}_3)\right) - x_0(l)$$

- Is given by a "simple" shift: $x(l) = M_{sector} \cdot x(0) + \Delta x$
- Heavy ions!

THORBEN SCHMIRANDER

10.02.2025

• Need distribution for angles and momenta

THORBEN SCHMIRANDER 10.02.2025 1. $\{\theta_i, \phi_i\} \in [0, \pi] \times [0, 2\pi]$ 3. $f_i \in [0, F(0, 0)]$

2. stratification *"rejection sampling"*

See: Arvo et al. SIGGRAPH (2004)

THORBEN SCHMIRANDER 10.02.2025 1. $\{\theta_i, \phi_i\} \in [0, \pi] \times [0, 2\pi]$ 3. $f_i \in [0, F(0, 0)]$

2. stratification *"rejection sampling"*

See: Arvo et al. SIGGRAPH (2004)

Concept Experiment Setup

- all particle subject to **SAME** GW force + **INDIVIDUAL** SR emission
- expected positions (dashed lines) incl. **AVERAGE** SR emission

Results

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

- chain of 100 U_2^+ ions
- dumped after t=10³ s
- $\beta = 0.32$
- L = 26.7 km

error of mean arrival time **ONLY** due to synch. rad. emission power fluctuations

14

Characteristic Noise Strain

ONLY due to synch. rad. emission power fluctuations , no other noise (read-out, etc.)

15

THORBEN SCHMIRANDER 10.02.2025

See: Schmirander et al. PRD **110**, 082002 (2024)

Characteristic Noise Strain

ONLY due to synch. rad. emission power fluctuations , no other noise (read-out, etc.) **THORBEN SCHMIRANDER** 10.02.2025

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

Still open design specifics:

10.02.2025

References

PHYSICAL REVIEW D 102, 122006 (2020)

Detection of gravitational waves in circular particle accelerators

Suvrat Rao[®],^{*} Marcus Brüggen[®], and Jochen Liske[®] Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany

(Received 10 July 2020; accepted 30 November 2020; published 22 December 2020)

Storage Rings and Gravitational Waves: Summary and Outlook

A. Berlin¹, M. Brüggen², O. Buchmueller³, P. Chen⁴, R. T. D'Agnolo⁵, R. Deng⁶, J. R. Ellis^{7,×}, S. Ellis⁵, G. Franchetti⁸, A. Ivanov⁹, J. M. Jowett⁸,
A. P. Kobushkin¹⁰, S. Y. Lee¹¹, J. Liske², K. Oide¹², S. Rao², J. Wenninger¹³, M. Wellenzohn⁹, M. Zanetti¹⁴, F. Zimmermann^{13,×,†}

 $^{\times}Editors$

21

PHYSICAL REVIEW D 110, 022007 (2024)

Detection of gravitational waves in circular particle accelerators II. Response analysis and parameter estimation using synthetic data

Suvrat Rao^{1,*} Julia Baumgarten^{2,2} Jochen Liske^{0,1} and Marcus Brüggen¹ ¹Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany ²Physics Department, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany

(Received 25 February 2024; accepted 10 June 2024; published 22 July 2024)

PHYSICAL REVIEW D 110, 082002 (2024)

Concept study of a storage ring-based gravitational wave observatory: Gravitational wave strain and synchrotron radiation noise

Thorben Schmirander^{1,2,*} Velizar Miltchev^{1,1} Suvrat Rao^{2,2} Marcus Brüggen^{2,2} Florian Grüner^{1,1} Wolfgang Hillert^{1,1} and Jochen Liske² ¹Institute for Experimental Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ²Hamburg Observatory, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany

THORBEN SCHMIRANDER 10.02.2025

18

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

Conclusion

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

- Particle in a storage ring: time delay encodes GW signature
- Include GW force & Synchrotron radiation (numerics)
- Concept of experimental setup
- Characteristic noise strain of radiation fluctuation
- open experiment setup questions/ noise sources

Thorben.Schmirander@uni-hamburg.de

air pressure fluctuations

DER FORSCHUNG | DER LEHRE | DER BILDUNG

storage ring

FAKULTÄT FÜR MATHEMATIK, INFORMATIK

UND NATURWISSENSCHAFTEN

BACKUP

ocean waves

FAKULTÄT FÜR MATHEMATIK, INFORMATIK

UND NATURWISSENSCHAFTEN

Terrestrial Gravity Noise

Signal Modeling

Sampling of Synchrotron Photons I

By parametrizing the surface of a sphere via $\vec{r}(\theta, \phi)$, the function

$$\sigma(\theta, \phi) = \left| \frac{d\vec{r}}{d\theta} \times \frac{d\vec{r}}{d\phi} \right|$$

is computed, used in the definition of two cumulative distribution functions

$$G(s) \coloneqq \frac{\int_0^{2\pi} \int_0^s \sigma(\theta, \phi) d\theta d\phi}{\int_0^{2\pi} \int_0^\pi \sigma(\theta, \phi) d\theta d\phi}$$

$$H(\theta, t) \coloneqq \frac{\int_0^t \sigma(\theta, \phi) d\phi}{\int_0^{2\pi} \sigma(\theta, \phi) d\phi}.$$

These functions are next inverted, such that

$$g(s_1) = G^{-1}(s_1),$$

$$h(s_1, s_2) = H^{-1}(s_1, s_2).$$

While this procedure is more general, in the particular case of a sphere it follows that $H^{-1}(s_1, s_2) = \text{Id}(s_2)$. The inverted functions can be used to map a distributions of angles $\{\theta, \phi\} \in [0, \pi] \times [0, 2\pi]$ onto itself by $(g(s_1),$ $h(s_1, s_2)): [0, \pi] \times [0, 2\pi] \rightarrow [0, \pi] \times [0, 2\pi]$, which turns a stratified sampling of cartesian space into a stratified sampling of the surface of a sphere.

THORBEN SCHMIRANDER 10.02.2025 **FAKULTÄT** FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN The provided and the p

Universal Synchrotron spectrum:

$$S(\xi) = \frac{9\sqrt{3}}{8\pi} \xi \int_{\xi}^{\infty} K_{5/3}(x) dx \qquad \qquad n(\xi) = \frac{P_{\gamma}}{u_c^2} \frac{1}{\xi} S(\xi)$$

Probability distribution:

$$\int_{0}^{\infty} u_{c} \frac{n(\xi)}{\dot{N}_{exp}} d\xi = 1 \qquad \xi \in [10^{-14}, 20]$$

$$\lim_{k \to \infty} \left(\tilde{q}_{\text{eff}}(f) + \tilde{n}_T(f) \right) \sim \tilde{q}(f)$$

FAKULTÄT

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

Analytics vs. Numerics

Geodesic Equations

$$\begin{aligned} \frac{d^2t}{d\tau^2} + \frac{1}{2} \frac{dh_{\theta\phi\psi}(t)}{dt} \left(\frac{dl}{d\tau}\right)^2 &= 0, \\ \frac{d^2l}{d\tau^2} + \frac{1}{1+h_{\theta\phi\psi}(t)} \frac{dh_{\theta\phi\psi}(t)}{dt} \left(\frac{dl}{d\tau}\right) \left(\frac{dt}{d\tau}\right) = 0, \\ - \left(\frac{dt}{d\tau}\right)^2 + (1+h_{\theta\phi\psi}(t)) \left(\frac{dl}{d\tau}\right)^2 &= g_{\mu\nu} d\dot{x}^{\mu} d\dot{x}^{\nu} = -1. \end{aligned}$$

$$h_{\theta\phi\psi}(t,\alpha) = h_+(t) \left(f_s^+ \sin^2 \alpha + f_c^+ \cos^2 \alpha + f_{sc}^+ \sin 2\alpha \right) + h_\times(t) \left(f_s^\times \sin^2 \alpha + f_c^\times \cos^2 \alpha + f_{sc}^\times \sin 2\alpha \right)$$

$$\begin{split} f_s^+ &= (\cos^2\theta\cos^2\phi - \sin^2\phi)\cos 2\psi - (\cos\theta\sin 2\phi)\sin 2\psi, \\ f_c^+ &= (\cos^2\theta\sin^2\phi - \cos^2\phi)\cos 2\psi + (\cos\theta\sin 2\phi)\sin 2\psi, \\ f_{sc}^+ &= \left(\frac{1}{2}(1 + \cos^2\theta)\sin 2\phi\right)\cos 2\psi + (\cos\theta\cos 2\phi)\sin 2\psi, \\ f_s^\times &= (\cos^2\theta\cos^2\phi - \sin^2\phi)\sin 2\psi + (\cos\theta\sin 2\phi)\cos 2\psi, \\ f_c^\times &= (\cos^2\theta\sin^2\phi - \cos^2\phi)\sin 2\psi - (\cos\theta\sin 2\phi)\cos 2\psi, \\ f_{sc}^\times &= \left(\frac{1}{2}(1 + \cos^2\theta)\sin 2\phi\right)\sin 2\psi - (\cos\theta\cos 2\phi)\cos 2\psi. \end{split}$$