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Outline

® The LVK Observatory

® Noise Budget — Optical Coatings R&D etc.

® Mass Gaps, Missing CWs, Eccentric Orbits, etc. —Data Analysis R&D

® Spaceborne Detectors & Pulsar Timing Arrays — Spectral Coverage

e HF GW Sources and Detectors (?)

® Possible PA /GW Technology Cross-Breeding Benefits

e Storage Rings as GW Detectors and Sources

® Gertsen’shtein effect : EM GW Detectors — Dual-Use ALP Detectors/Experiments
e Toward a GW Hertz Experiment ?

e Critical Technologies
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Running/Planned GW Observatories

e The 2" generation LIGOs [Aasi et al., CQG 32 (2015) 074001], Virgo [Acernese et al.,
CQG 32 (2015) 024001] and (15t underground and cryogenic) KAGRA [Akutsu et al.,
Progr. Th. Exp. Phys. 2021 (2021) 05A101] are the four “legs” of the LIGO-Virgo-Kagra
(LVK) GW Observatory, featuring good (albeit limited) direction-of-arrival and source-
reconstruction capabilities. Addition of a LIGO-clone in India [www.gw-indigo.org/tiki-
index.php] is envisaged*.

® As of today, many GW chirps have been observed across five observational runs span-
ning several months; mostly from BH-BH, but also from NS-NS and (recently) NS-BH
binaries, including multi-messenger (GW, EM and neutrino) observations [Meszaros

et aI., Nature Rev. Phys. 1 (2019) 585] Masses in the Stellar Graveyard
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[Shoemaker et al., LIGO-G2002127] [https://media.ligo.northwestern.edu/gallery/masses-in-the-stellar-graveyard]

*Smaller scale interferometric detectors, including GEO-600, TAMA-300, the Caltech-40m, and the
100m-cryogenic CLIO, are mainly used as technology test-beds for the bigger instruments .
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Earthbound GW Detectors Noise Budget

® Seismic noise (at low frequencies), and laser (shot) noise (at high frequencies) limit the
observational window of Earth-bound interferometric detectors to (20 - 200 Hz), where
the noise floor is dominated by thermal noise in the mirrors terminating the interfero-
meter arms. Next - gen Earth - bound detectors, such as the Einstein Telescope (ET)
[https://www.et-gw.eu], and the Cosmic Explorer [https://cosmicexplorer.org/], with
reduced noises and improved source-localization / reconstruction capabilities, will be
similarly limited by the same main types of noise in terms of spectral coverage.
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Multimaterial Coatings

® Prototype design by V. Pierro @USannio. i
Material params provided by LMA (SC & GC). — i (50
- Design goals: ap = 1.5ppm; 7p = 5.6ppm.
e Made/tested @LMA (M. Granata et al),
» Small Coater (SC) for bottom (SiO,/SiN,) stack
- Grand Coater (GC) for top (SiO,/Ta,0;) stack.

e CTN measurements @MIT (N. Demos et al).
e Results [Granata et al., PRD 111 (2025) 042003)
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in excellent agreement with design. § " 3
o
® Noise ASD @100Hz 25% lower than aLIGO. < -
Reflectance & absorption fit the design values. S . w2

e Point scatterers & other defects (excess diffraction) e
under investigation.

® SC-deposited SiO, has larger (twofold) mechanical Tann [C]
losses compared to GC-deposited one. Lower CTN expected if both stacks are deposited in the GC.
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Nanolayered Optical Films

® Materials: QWL films with n.rr = 2.07 designed & dep05|ted @USannio/UniSA

® GeNS measurements @LMA by L. Mereni U\a Giisst pfithe
Coating Holy Grail
1.E-03 (Amorphous materials only)
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Red markers:  fast deposition (1A/s both materials) i e e Ropr = 207
Green markers: slow deposition (0.2A/s TiO,, 0.4A/s SiO,) ol L (calculated & measured)

= slower deposition yields lower CTN
e L. Mereni et al., LIGO - G2401236, G2401199
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Mass Gaps, Missing (CW)-GWs, Eccentric BCS etc.

(Chirp-)Mass gaps in the observed CBS So far, despite the develop[ment of
population [Edelman et al., Ap.J. Lett. elegant and powerful dedicated data
123 (2021) 913] exist analysis pipelines, including the world-

scale Einstein@Home computing farm,
no almost-continuous GW from spinning
NS has been detected. See [Abac et al.,
arXiv:2501. 01495 (2025)] and [Ming et
al., Ap.J. 977 (2024) 154] for up-to-date
accts.

So far (2024) only a handful of events
have been vetted where the compa-
panion masses are in the NS-BH gap

(2 to 5 Mg) — the most relevant being
perhaps GW230529 (likely a NS-BH
binary with Mpy = 2.5 — 4.5M, .
[Abac et al., Ap. J. Lett. L34 (2024) 970]

BCS with eccentric orbits may form as an effect of several mechanis, and remain fairly
eccentric until the very last phases of coalescence (in contrast to previous belief) [\Wag-
ner & O’Shaughnessy, PRD 110 (2024) 124024].

As of today, detection and orbital parameter estimation algorithms appropriate for ec-
centric orbits are still under development. The search for eccentric orbits in observed
coalescence events has remained elusive so far [Abbot et al., Ap.J. 883 (2019) 149;
Abac et al. Ap.J, 973 (2024) 132].
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Clever Representations : Time-Frequency Tracks

-

Nicolas Leroy - IJCLab
for the LIGO Scientific, \I/IIDr c>2 812n2d KAGRA collaborations

LIGO DCC-G2201356 — VIR-0825A-22
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(More) Clever TF Representations

Goal: achieve largest resolution in both time and frequency ...
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... While suppressing intermodulation artifacts.
Best solution so far: smoothed & sparsified Wigner-Ville.
[Flandrin & Borgnat, IEEE Trans SP-58 (2010) 2974]

In particular, sharp(er) TF re-
presentations based on com-
pressed coding can be used to
build efficient estimators of
chirp mass and orbital eccen-
tricity at some reference ti-
me [Pinto, J. Phys. Conf. Ser.
2081 (2021) 012008]...

710 MM,

06 "0
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Unmodeled Signals

" 0.0 radt —— 7

® A wide class of expected GW signals are basically un-modeled
(collapsing binaries and rotating neutron stars are exceptions !)
These include, e.g., GW bursts from supernovas, GRBs, etc.
[Anderson and Kokkotas, Lect.Notes Phys. 653 (2005) 255].

h, at 10 kpc[lO'"',l]

-50 0 50 100 150 200

® Supernova outburst waveforms have been extensively studied Titio i o]
by numerical simulations, but no simple physically parameterized model is available
[Dimmelmaier et al., Phys. Rev. D78 (2008) 064056; Yokozawa et al., Ap. J. 811 (2015) 86 ].

® An observatory made of D > 2 (non-colocated, non-aligned) detectors allows to write
any S;(t) as alinear combination of the other S, (t), k # d, with coefficients depend-
ing uniquely on the Fd+'x(ﬂs). This is known as multiple-detector redundancy [Gursel
and Tinto, Phys. Rev. D40 (1989) 3884].

Example : D = 3. Three equations relating the (measurable) Si(t) , k =1,2,3, to the two
transverse-traceless GW components h* and h*
S BT ORT
det( S, Rt B | =0=(RF-F F")S — (F, F3*-F,"F;") S, + (F, TR, -F, F,™) S;
S, F© R
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Unmodeled Signals, contd.

e If no noise was there in the data, V;(t) = S;(t) and we may construct S;(t) (a template
for V;(t)) as follows :
' (FYF-FFY) (R -FF)

Sl - 2 3 [*]
(F"F3™~F, F3™) (F"F3™~F, F3™)

(similar formulas hold for S,, S3), even if the observed GW is unmodeled/unknown.

® This appealing idea for detecting (and reconstructing) unmodeled GWs by clever data-
fusion using D>2 detectors was first suggested by Klimenko and Rakhmanov
[Class. Quantum Gravity, 22 (2005) S131]. ’

Problem | : for some DOAs, the matrix-inversion behind eq.
[*] may be plagued by ill-conditioning, hence Tikhonov
regularization may be needed, to obtain a pseudo-inverse
[Rakhmanov, Class. Quantum Grav. 23 (2006) S673];

Problem Il : we need to take into account that the individual detector noises are non-
Gaussian, and that the (pseudo)-templates obtained as above are also affected by heavy-
tailed noise. We shall accordingly filter all V,; data using the appropriate nonlinear g(x)
to implement a multi-sensor locally-optimum detection statistic .
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Glitches*

... transient disturbances of environmental or instru-
mental origin leaking into the data channel via dif-
o ferent linear (and nonlinear) paths ...
... glitches appear in the data (and aux/monitoring)
channels as linear combinations (with random am-

plitudes and delays) of a small number of (linear
and nonlinear) canonical responses ...

Glitches make the noise non-Gaussian (locally opti-
mum detectors, noise subtraction, glitch dictionaries...)

“GW” channel

Disturbance 2 — “AUX” channels

.\v @ entry ports )

*) ... the word comes from Yiddish term glitsh (w0'72) aka slippery (dangerous) step ...
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Running/Planned GW Observation Experiments

e Observing lower frequency GWs will be possible with LISA [https://lisamission.org/], a
large scale (2.5 - 10° m arm-length) space-borne interferometric detector, planned for
launch in 2037, whose pathfinder mission was remarkably successful [Armano et al.,
PRL 116 (2016) 231101]. -
¢ Two comparable Chinese project [Luo et al., b {}
CQG 33 (2016) 035010, W.-H. Ruan et al., arXiv:
1807.09495v2], and a smaller (Earth orbit-scale) " i
Japanese project [http://decigo.jp/index_ E] e @7
have been proposed; further developments of ‘ R
space-borne interferometers may be envisaged B , ¥

[Crowder and Cornish, PRD72 (2005) 083005]. .
[Y. Gong et al., Nature Astron. 5 (2021) 881]

® Pulsar-timing [Hobbs and Dai, Nat.| Sci. Rev. 4
(2017) 707] will eventually open a window on 2‘;’:“‘“;";:’“"“°”“““““ SRS
the extreme low-frequency bands of the GW
spectrum. Early results from the leading Labs
[https://iptadgw.org/, https: //nanograv.org/,
www.epta.eu.org/, https://www.atnf.csiro.au/ 30
research/pulsar/ppta/, https://inpta.iitr.ac.in/,
https://www.skao.int/, https://www.prao.ru/]
look promising .
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Spectral Coverage of Running/Planned GW Observatories

[I.H. Park, J. Korean Phys. Soc. 78 (2021) 886]
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Back-of-an-Envelope Numbers

Source reduced Characteristic frequency
quadrupole moment
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HF-GW Sources (& Detectors) ?

e Potential natural HF GW sources have been recently reviewed in [Aggarwal et al.,
Living Revs. Relativ. 24 (2021) 4]. Present day event-rate estimates are *very spe-
culative®. In a pragmatic attitude [Cruise, CQG 29 (2012) 095003] it is suggested
operating (and improving) available HF-GW detectors to obtain reliable upper bo-
unds on HF-GWs of natural origin.

® Laser interferometers designed to detect GWs in the 10-100 MHz range, w. fractional
bandwidth ~1073 were proposed in [Nishizawa et al., PRD77 (2008) 022002], and proto-
typed shortly after [Akutsu et al., PRL 101 (2008) 101101].
Correlation between similar co-located instruments (w. 40m arm-length), originally
aimed at probing quantum-geometry spacetime fluctuations [https://holometer.
fnal.gov/], has been used to set upper limits on the stochastic GW energy density
in the 1-10 MHz band [Chou et al., PRD 95 (2017) 063002], and to rule out harmonic
sources above a GW-strain level ~102'Hz"Y/2 jn that band [Martinez and Kamai, CQG
37 (2020) 205006]. A similar improved prototype is in construction at Cardiff Univer-
sity [Vermeulen et al., CQG 38 (2021) 085008].

® Narrowband HF-GW detectors, based on HF phonon-trapping in bulk-acoustic wave
resonators, tunable throughout the HF to UHF band have been prototyped at UWA
[Goryachev et al., PRL 127 (2021) 071102; Lasky and Thrtane, PRD 104 (2021) 103017],
and are (MEGA) under active development [Campbell et al., Sci. Rep.ts (2023) 13:10638] .
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Rationale

® In a recent CERN (SRGW2021) workshop [https://indico.cern.ch/event/982987],
storage-rings/colliders were (re)-considered as potential GW sources/detectors;

® Also, three recent meetings, hosted by the ICTP [https://indico.ictp.it/event/9006/]
and CERN [htpps://indico.cern.ch/event/1074510/] focused on high frequency (HF)
GWs [https:// indico.cern.ch/event/1257532/];

® These Meetings paved the way for a revived cooperations between Particle Accelera-
tors and GW Physicists. This is not new: the intersection between these Communi-
ties has never been void !

® Indeed, after the 1%t observation of the Higgs boson at the LHC (2012), and the 1t
direct detection of GWs (2015), both Communities started thinking how to benefit
from ideas and technologies developed by the other Party, in particular as regards
covering the “blind-spots” of the GW spectrum, so far unexplored;

® A preliminary review of possible synergies and critical directions was attempted by
these Authors in a poster presented at the 14th IPAC (2023).
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Technology Cross-Breeding Benefits ?

® |s technology cross-breeding between PA and GW promising ?

e Gravitational wave detectors based on matter (ultracold Sr atom beams) rather
than light interferometry may target the 0.01 to 1 Hz spectral range [Dimopoulos
et al., Phys. Lett., vol. B678 (2009) 371, and could greatly benefit from existing
advanced PA technologies . At least two such experiments are under active deve-
lopment [Badurina et al., J. Cosmol. Astropart. Phys. 5 (2020) 011; Y.A. El-Neaj et
al., Eur. Phys. J. Quantum Technol. 7 (2020) 6].

® Housing of a prototype atom-beam interferometer in an LHC access tunnel at CERN
is under consideration [Arduini et al., arXiv:2304.00614].

e On the other hand, it has been suggested that GW detector technology achieve-
ments, especially in quantum - limited metrology [Braginsky and Manukin,
Measurement of Weak Forces in Physics Experiments, Chicago Univ. Press (1977)]
and noise control [Harry et al. (Eds.), Optical Coatings and Thermal Noise in Preci-
sion Measurement, Cambridge Univ. Press (2012)], may offer new improvements
to hadronic/nuclear cross-section measurements [Englert et al., Europhys. Lett.
123 (2018) 41001].
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Particle Accelerators as GW Sources/Detectors ?

e Old and new ideas on this subject were reviewed at the CERN SRGW-21 (ARIES-
WP6) Meeting [Berlin et al., arXiv:2105.00992].

® A first analysis of direct (primary) synchrotron GW radiation from a storage ring (at
W = Weire) Was made in [Diambrini-Palazzi and Fargion, Phys. Lett. B197 (1987) 302].
Revised estimates, including secondary synchrotron GW radiation produced by pho-
ton-graviton) conversion (Gertsenshteyn effect) of the EM synchrotron radiation in
a strong magnetic field (at w = y3w,;.) have been discussed by Jowett [https://indi-
co.cern.ch/event/982987/contributions/4270745] and Chen [arXiv:2111.0455734] .

O Betatron motion response to an incoming (high-frequency, plane) GW [Zer-Zion,
Astropart. Phys., 14 (2000) 239], its enhancement by proper lattice design, and its
possible tuning to a specific steady GW source (e.g., PSR BO531 + 21) have been
discussed by Oide [https://indico.cern.ch/event/982987/contributions/4199474/] ;

o A thorough analysis of the noise budget of a GW detector in the mHz band, based
on accurate longitudinal orbit-timing has been presented by Rao [Phys. Rev. D102
(2020) 122005; ibid D110 (2024) 022007];

SRFWmb2025 — CERN, Geneva, February 10-11 2025 20



GSR — Orders of Magnitude

® All n;, particles in a bunch, ad all N bunches (assumed

[P. Chen, 2021)

(distributed asymmetrically along the ring) radiate 102 g—r—rrrrm— A B ey
- -1 e
GSR coherently. o foTT eI -
(tot) . % he? - E Tl _— ]
e Total GSR luminosity : Wggp~Y — e T PRETORN
MP er 53 E e o = ]
g 'E: E |0| r-‘ ...... |/3 - e s\ _=
(Mp = 2.17 - 107° g being the Planck mass) gL E x P
my\° ¢ % " ] o _3
e GSR graviton rate : N~y* (nbN Mp) = S SSllspectiim
2\ By e :
' iation : h~ n, S S I el i
¢ MEFFIC deviation: h nbN |4 (M ) 'oslo-s 103 102 10°! 100 10!
(at distance R from ring) P z = wfwe
| LEP2 LHC p LHC Pb FCC p FCC Pb
E/TeV 0.1 s 574. 50. 4100.
Y 196000. 7460. 2960. 53300. 21200.
Neot = m,N 1.66 x10%2 4.2x10% 2.4x10% 1.04 x10** 1.08 x 102

e Jowett has shown that protons win vs heavy ions (Pb) in terms of Pggr [W]

e Secondary GSR would be peaked at much shorter (ay~2 factor) wavelengths (down to the IR),

and would be fainter by a factor
LH H mp

h
2 Ac =— isthe single-particle Compton wavelength

— — )} K1 ,where+ Ly isthe interaction-length with the mag field H

Ac HC

myc?
H, = —2— is the Schwinger critical field
¢ eh
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Gertsen’shtein Effect

e GW detectors (and sources) based on the direct (and inverse) Gertsen’shtein effect
(photon graviton conversion in a static magnetic field [Gertsenshtein, JETP 14 (1962)
84] have been studied in depth and extensively by the Russian School [Braginskii et al.,
JETP 38 (1974) 865; lNanbuos u Ap., “UsnyyeHune rpaBUTaLMOHHbIX BOJIH 3NEKTPOAUNHA-
Munyecknmmn cuctemammn,” Uspatenoctso MIY MockBa (1984); Grishchuk, ArXiv: gr-
qc/0306013 (2003); ... ; Gorelik et al., Bull. Lebedev Phys. Inst. 45 (2018) 39; Pusto-
voit et al., J. Phys. Conf. Ser. 1557 (2020) 012034, Ibid. 2081 (2021) 012009, etc.].

Different EM detectors of GWs have been proposed (see [A. Berlin et al., PRD 105,
(2022) 116011] for a recent review), exploiting the interaction of a GW with the
cavity shell, and/or with the vacuum equivalent displacement currents. Depending
on the GW frequency, different gauges may be adopted to make the coupling de-
scription easier to manage [Rakhmanov, CQG 31 (2014) 085006].

Both HF and LF detectors based on EM resonators have been analyzed and proto-
typed [lacopini et al., Phys. Lett. A73 (1979) 140; Pegoraro et al., Phys. Lett. A68
(1978) 165; Caves, Phys. Lett. B80 (1979) 323; Reece et al., Phys. Lett. A104 (1984)
341; Cruise, CQG 17 (2000) 2525; Ballantini et al., ArXiv:gr-qc/0502054 (2005);
Cruise and Ingley, CQG 22 (2005) S479, etc], and are worth renewed interest, in
view of important advances in the relevant key technologies.

(see Domcke’s talk)
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Electrogravitational Coupling Based GW Detectors

~| Spectrum
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e tunable

® bandwidth adjustable
e single or xylophone operation @ detailed noise budget analysis
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MAGO (2005 ... 2025)
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Abstract

In this report the theoretical and experimental activities for the development of
superconducting microwave cavities for the detection of gravitational waves are presented.
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ABsTRACT: Heterodyne detection using microwave cavities is a promising method for de-
tecting high-frequency gravitational waves or ultralight axion dark matter. In this work, we
report on studies conducted on a spherical 2-cell cavity developed by the MAGO collabora-
tion for high-frequency gravitational waves detection. Although fabricated around 20 years
ago, the cavity had not been used since. Due to deviations from the nominal geometry, we
conducted a mechanical survey and performed room-temperature plastic tuning. Measure-
ments and simulations of the mechanical resonances and electromagnetic properties were
carried out, as these are critical for estimating the cavity’s gravitational wave coupling
potential. Based on these results, we plan further studies in a cryogenic environment. The
cavity characterisation does not only provide valuable experience for a planned physics run
but also informs the future development of improved cavity designs.
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ALP-Experiments as HF-GW Detectors

® Remarkably, several experiments aimed at exploring the spectrum of Axion-like par-
ticles (ALP) and other candidate dark matter constituents are also based on high-Q
EM resonators [Berlin et al., arXiv:2203.12714 (2022)], e.g. in view of the analogy
between Gertshensteyn (graviton-photon) and Primakoff (axion-photon) effects
[Sikivie et al. PRL 98 (2007) 172002].

® Hence ALP like experiments may be used to place limits on natural GW radiation in
various bands of the HF-GW spectrum, almost at no added cost [Domcke et al., PRL
129 (2022) 041101 ; Tobar et al., Symmetry, 14 (2002) 2165].

® Indeed, upper limits on (stochastic) GWs in the frequency bands (2.7 to 14) - 1014 Hz
and (5to 12) - 108 Hz, have been already derived from data gathered by ALP
detection experiments [Eijili et al. Eur. Phys. J. C79 (2019) 1032].

® The “buy — one — get - one — free” feature of ALP/HF-GW experiment is a strong
arrow in the bow for their Proponents.
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ALP/HF-GW Experiments (as of Today)
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Left: Axion mass, coupling, and photon-frequency (Primakoff-conversion).
The grey zone corresponds to active experiments; the diagonal band to possible QCD
generation mechanisms [Paolucci and Giazotto, Instruments 5 (2021) 14].

Right: Extrapolated GW strain sensitivity for some axion experiments [Berlin et al., PRD 105,

(2022) 116011]
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GW Hertz Experiment ?

® The feasibility of a HF-GW-based Hertz experiment based on direct/inverse Gertsen’-
shtein effect has been discussed in [Kolosnitsin and Rudenko, Phys. Scrip. 90 (2015)
074059], including order of magnitude estimates.

(see I. Fomin’s talk)

® Back in 1991, in a mantic discussion about the possibility of GW-based Communica-
tions (!), John D. Kraus (a father of Radioastronomy) suggested that a key to succeed
in such a dream would be matching the extremely low GW free-space impedance
[Kraus, IEEE Antennas Propag. Mag., 33 (1991) 21].

e Twenty years later, Ray W. Chiao suggested that superconductors may act as GW mir-
rors, as an effect of WEP violation by Cooper-pairs [Mintner et al., Physica E42 (2010)
234]. Albeit controversial —see Ref. [Bahamonde et al. Int. J. Mod. Phys. D29 (2020)
2043024] for a review and an alternative recent derivation of Chiao’s argument .

If experimentally substantiated, that would be a real game-changer [Chiao et al., Ar-
Xiv: 1712.08680 (2017)].
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Progress in Critical Technologies for HF-GW

e Superconducting RF Technologies have been crucial for the development of col-
liders [S. Belomestnykh, Frontiers in Phys., 10 (2022) 933479], and will be a key
component for present/future GW/ALP detectors [A. Berlin et al., arXiv:2203.
12714 (2022)].

GHz -SC resonators with Q > 100 are currently manufactured [A. Romanenko et al.,
Appl. Phys. Lett., 105 (2014) 234103], but cannot operate in strong magnetic fields,
as required for GW/ALP experiments. Nb,Sn or NbTi cavities (in a vortex state)
may sustain /large magnetic fields (~10T), with Q > 10° [S. Posen et al., ArXiv:
2201.10733 (2022)].

e Single Photon Detectors (SPD) are developing along several directions (SNSPD,
SPAD, TES). SPDs for THz [O. Astafiev et al., Appl. Phys. Lett. 80 (2002) 4250] and
GHz [F. Paolucci, F. Giazotto, Instruments, 5 (2021) 14] operation are now available.

 Large Magnetic Fields. Steady operation of hybrid (SC/resistive) DC magnets at
~ 45T has been achieved [S. Hahn et al., Nature 570 (2019), 496, 2019].
Pulsed fields (15 msec at ~ 100 T) are now routinely produced [https://national-
maglab.org/ ]. Localized giant pulsed field (~ 103 T) obtained by (destructive)
magnetically-driven implosion have been demonstrated [D. Nakamura et al.,
Rev. Sci. Instrum. 89 (2018) 095106].
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Backup Stuff - Nb,Sn Cavity in a Strong Magnetic Field
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Measured quality factor of Nb,Sn cigar-shaped resonator vs (increasing or decreasing)
magnetic field; measurements on the TESLA cavity are shown for comparison. Close-up
in the inset [S. Posen et al., arXiv:2201.10733 (2022)]
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Conclusions

e We are likely facing a revival of mutual interest between the Particle Accelerators
and Gravitational Wave Communities;

® This is not surprising : the fathers of LIGO, Virgo and KAGRA came from the world
of high-energy/high luminosity colliders;

e Mutual knowledge and Technology breeding may boost both fields;

e The timescale for productive cooperation, and its potential will depend on our
courage and good will (as usual !).
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New Paradigms May be Hard to Receive ...

... but be Worth a Try! ...
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