Electromagnetic Detection of Gravitational Waves

University of Geneva

SRGW2025

Sebastian A. R. Ellis

CERN, FEB. 11TH, 2025

$S_{\rm EM} = \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + g^{\mu\nu} J_{\mu} A_{\nu} \right)$

 $S_{\rm EM} = \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + g^{\mu\nu} J_{\mu} A_{\nu} \right)$

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu} \longrightarrow \mathcal{L} \supset \mathcal{O}(hF^2)$

Equation of motion: $\partial F \sim -\partial (hF)$

 $S_{\rm EM} = \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + g^{\mu\nu} J_{\mu} A_{\nu} \right)$

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu} \longrightarrow \mathcal{L} \supset \mathcal{O}(hF^2)$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

∂F **Equation of motion:**

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - h^{\mu}_{\ \alpha} F^{\alpha\nu} \right)$$

Berlin, Blas, D'Agnolo, SARE, Harnik, Kahn, Schutte-Engel (PRD 2022)

$$M = \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + g^{\mu\nu} J_{\mu} A_{\nu} \right)$$

$$'-h^{\mu
u}$$
 \longrightarrow $\mathcal{L} \supset \mathcal{O}(hF^2)$

$$F \sim -\partial (h F)$$

Effective current from spatial or temporal variations of h or F

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of h or F

$$j_{\rm eff}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right) = 0$$

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right) = 0$$

Currents can excite cavity modes \mathbf{E}_{cav} as long as η non-zero:

$$h^{\mu}_{\ \alpha} F^{\alpha\nu}
ight)$$

$$\eta \propto \int_V \mathbf{E}_{\mathrm{cav}}^* \cdot \mathbf{J}_{\mathrm{eff}}$$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Currents can excite cavity modes \mathbf{E}_{cav} as long as η non-zero:

Should be reminiscent of axion physics...

$$h^{\mu}_{\ \alpha} F^{\alpha\nu}
ight)$$

$$\eta \propto \int_V \mathbf{E}_{\mathrm{cav}}^* \cdot \mathbf{J}_{\mathrm{eff}}$$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Currents can excite cavity modes \mathbf{E}_{cav} as long as η non-zero:

Should be reminiscent of axion physics...

 $h^{\mu}_{\ \alpha} F^{\alpha\nu}$

$$\eta \propto \int_V \mathbf{E}_{\mathrm{cav}}^* \cdot \mathbf{J}_{\mathrm{eff}}$$

Gertsenshtein effect (1962)

Also Zeldovich (1973)

 $j_{\rm g} \sim \partial \left(h F \right)$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Currents can excite cavity modes \mathbf{E}_{cav} as long as η non-zero:

Should be reminiscent of axion physics...

 $h^{\mu}_{\ \alpha} F^{\alpha
u}$

$$\eta \propto \int_V \mathbf{E}_{\mathrm{cav}}^* \cdot \mathbf{J}_{\mathrm{eff}}$$

Gertsenshtein effect (1962)

Also Zeldovich (1973)

 $j_{\rm g} \sim \partial \left(h F \right)$

 $j_{\rm a} \sim g_{a\gamma\gamma} \partial \left(a F \right)$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Currents can excite cavity modes \mathbf{E}_{cav} as long as η non-zero:

Should be reminiscent of axion physics...

 $h^{\mu}_{\ \alpha} F^{\alpha \nu}$

$$\eta \propto \int_V \mathbf{E}_{\mathrm{cav}}^* \cdot \mathbf{J}_{\mathrm{eff}}$$

Gertsenshtein effect (1962)

 $j_{\rm g} \sim \partial \left(h F \right)$

 $j_{\rm a} \sim g_{a\gamma\gamma} \partial \left(a F \right)$

Raffelt & Stodolsky (1988)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Detailed estimates require some GR

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Detailed estimates require some GR

GW in TT gauge: $\partial_{\mu}h^{\mu\nu} = 0$, $h_{\mu}^{\mu} = 0$,

$$h_{00} = h_{0i} = 0$$

Detailed estimates require some GR

GW in TT gauge: $\partial_{\mu}h^{\mu\nu} = 0$, $h_{\mu}^{\mu} = 0$,

Riemann tensor invariant at O(h):

$$R_{0i0j} = -\frac{1}{2}\partial_t^2 h_{ij}^{\text{TT}},$$

$$R_{0ijk} = \frac{1}{2}\partial_t \left(\partial_k h_{ij}^{\text{TT}} - \partial_j h_{ik}^{\text{TT}}\right),$$

$$R_{ikjl} = \frac{1}{2} \left(\partial_k \partial_j h_{il}^{\text{TT}} + \partial_i \partial_l h_{jk}^{\text{TT}} - \partial_l h_{ik}^{\text{TT}}\right),$$

$$h_{00} = h_{0i} = 0$$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Crucial to work in appropriate reference frame!

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Crucial to work in appropriate reference frame!

Detector in Local Inertial Frame (LIF)

$\hat{\boldsymbol{n}} \times \boldsymbol{E} = 0$ $\hat{\boldsymbol{n}} \cdot \boldsymbol{B} = 0$ Maxwell (19th century)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Crucial to work in appropriate reference frame!

Detector in Local Inertial Frame (LIF)

$\hat{\boldsymbol{n}} \times \boldsymbol{E} = 0$ $\hat{\boldsymbol{n}} \cdot \boldsymbol{B} = 0$ Maxwell (19th century)

B-field in LIF \neq *B*-field in TT

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Crucial to work in appropriate reference frame!

Detector in Local Inertial Frame (LIF)

$\hat{\boldsymbol{n}} \times \boldsymbol{E} = 0$ $\hat{\boldsymbol{n}} \cdot \boldsymbol{B} = 0$ Maxwell (19th century)

B-field in LIF \neq *B*-field in TT

Which frame is the right one to use?

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Proper Detector Frame — complication

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Proper Detector Frame — complication

Textbooks give long-wavelength approximation $\omega_g R_{\rm cav} \ll 1$

$ds^2 \simeq -dt^2(1 + R_{0i0j}x^ix^j) - rac{4}{3} dt \, dx^i \left(R_{0ijk}x^jx^k\right) + dx^i \, dx^j \left(\delta_{ij} - rac{1}{3}R_{ikjl}x^kx^l\right)$ e.g. Maggiore (2007)

Proper Detector Frame — complication

Textbooks give long-wavelength approximation $\omega_g R_{cav} \ll 1$ $dx^i \left(R_{0ijk}x^jx^k ight) + dx^i \, dx^j \left(\delta_{ij} - rac{1}{3}R_{ikjl}x^kx^l ight)$ e.g. Maggiore (2007)

$$ds^2 \simeq -dt^2(1 + R_{0i0j}x^i x^j) - \frac{4}{3} dt dx$$

Resonant Cavity:

Proper Detector Frame — complication

Textbooks give long-wavelength approximation $\omega_g R_{\rm cav} \ll 1$

$$ds^2 \simeq -dt^2(1 + R_{0i0j}x^i x^j) - \frac{4}{3} dt dx$$

Resonant Cavity:

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Proper Detector Frame — complication

Textbooks give long-wavelength approximation $\omega_g R_{\rm cav} \ll 1$

$$ds^2 \simeq -dt^2(1 + R_{0i0j}x^i x^j) - \frac{4}{2} dt dx$$

Resonant Cavity:

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Solution — GW as sum of plane waves

$$h \propto e^{i\omega_g(t-z)} \longrightarrow \partial_i h_{jk}^{\mathrm{TT}} \sim -\delta_{iz} \partial_t h_j^{\mathrm{TT}}$$
$$x^{k_1} \dots x^{k_r} R_{\mu\nu\rho\sigma,k_1\dots k_r} = (-i\omega_g z)^r R_{\mu\nu\rho\sigma}$$

$$R_{0n0n,k_1,\cdots,k_r}x^mx^nx^{k_1}\cdots x^{k_r}$$

$$R_{0nin,k_1,\cdots,k_r} x^m x^n x^{k_1} \cdots x^{k_r}$$

Märzlin (1994) Rakhmanov (2014)

Solution — GW as sum of plane waves

Berlin, Blas, D'Agnolo, SARE, Harnik, Kahn, Schutte-Engel (PRD 2022)

 $h \propto e^{i\omega_g(t-z)} \longrightarrow \partial_i h_{jk}^{\Gamma \Gamma} \sim -\delta_{iz} \partial_t h_{jk}^{\Gamma \Gamma}$ $x^{k_1} \dots x^{k_r} R_{\mu\nu\rho\sigma,k_1\dots k_r} = (-i\omega_q z)^r R_{\mu\nu\rho\sigma}$

 $h_{0i} = -2R_{0min}x^m x^n \left(-\frac{i}{2\omega_g z} - \frac{e^{-i\omega_g z}}{(\omega_g z)^2} - i\frac{1 - e^{-i\omega_g z}}{(\omega_g z)^3} \right)$ $h_{ij} = -2R_{imjn}x^{m}x^{n} \left(-\frac{1+e^{-i\omega_{g}z}}{(\omega_{g}z)^{2}} - 2i\frac{1-e^{-i\omega_{g}z}}{(\omega_{g}z)^{3}}\right)$

Märzlin (1994) Rakhmanov (2014)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Transfer function for EM conversion

$$\left(\omega_1^2 - \omega^2 + i\frac{\omega\omega_1}{Q}\right)\tilde{e}_1(\omega) \simeq \int d\omega'\tilde{e}_0(\omega - \omega')g_e\omega\,\tilde{h}^{\mathrm{TT}}(\omega')$$

 $g_e \equiv \omega_g (1 + \omega_g L + \omega_0 L) \min[1, \omega_g L]$

$$\mathcal{T}_{\rm EM}^2(\omega) = \frac{\omega_g^2 \omega^2 (\omega_g L + \omega_0 L + 1)^2}{\left((\omega_1^2 - \omega^2)^2 + \frac{\omega^2 \omega_1^2}{Q^2}\right)} \min[1, \omega_g^2 L^2]$$

D'Agnolo, SARE (gr-qc/2412.17897)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Further complications: What is an EM field?

What does $I \delta(z) \delta(y)$ look like far from c.o.m.?

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Further complications: What is an EM field?

EM field generated by a charge/current distribution

$$\delta(z)\,\delta(y)$$

What does $I \delta(z) \delta(y)$ look like far from c.o.m.?

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Further complications: What is an EM field?

EM field generated by a charge/current distribution

Proper Detector Frame is expansion around c.o.m.

$$\delta(z)\,\delta(y)$$

What does $I \delta(z) \delta(y)$ look like far from c.o.m.?

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Interactions of Gravitational Waves with masses

 $S = -\int dt \ m \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{dt} \frac{dx^{\nu}}{dt}$

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu}$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Equation of motion: $\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho}(x) \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} = 0 \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu}$

Interactions of Gravitational Waves with masses

 $S = -\int dt \ m \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{dt} \frac{dx^{\nu}}{dt}$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Equation of motion: $\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho}(x) \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} = 0 \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu}$

$\Gamma \propto \partial h$ Effect of GW encoded in Christoffel symbol

Interactions of Gravitational Waves with masses

 $S = -\int dt \ m \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{dt} \frac{dx^{\nu}}{dt}$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Consider Local Inertial Frame

e.g. Maggiore (2007)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Consider Local Inertial Frame

Effect of GW in LIF is that of a Newtonian Force

e.g. Maggiore (2007)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Consider Local Inertial Frame

Effect of GW in LIF is that of a Newtonian Force

$$\frac{d^2 \xi_i}{d\tau^2} \simeq -\frac{F_i}{m}$$

e.g. Maggiore (2007)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Consider Local Inertial Frame

Effect of GW in LIF is that of a Newtonian Force

$$\frac{d^2 \xi_i}{d\tau^2} \simeq -\frac{F_i}{m}$$

 $\frac{d^2 \xi_i}{d\tau^2} \simeq -\partial_i \, \Gamma_{00}^j \, \xi^i$

e.g. Maggiore (2007)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Returning to Framing the Question

Consider Local Inertial Frame

Effect of GW in LIF is that of a Newtonian Force

$$\frac{d^2 \xi_i}{d\tau^2} \simeq -\frac{F_i}{m}$$

 $\frac{d^2 \xi_i}{d\tau^2} \simeq$

$$\simeq -\partial_i \, \Gamma^j_{00} \, \xi^i$$

 $F_i \simeq \frac{m}{2} \ddot{h}_{ij}^{\mathrm{TT}} x^i$

e.g. Maggiore (2007)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Returning to Framing the Question

Consider Local Inertial Frame

Effect of GW in LIF is that of a Newtonian Force

$$\frac{d^2 \xi_i}{d\tau^2} \simeq -\frac{F_i}{m} \qquad \qquad \frac{d^2 \xi_i}{d\tau^2} \simeq -\partial_i \,\Gamma_{00}^j \,\xi^i$$

Long-wavelength approximation valid because materials have $c_{\rm s} \ll 1$

$$F_i \simeq \frac{m}{2} \ddot{h}_{ij}^{\mathrm{TT}} x^i$$

e.g. Maggiore (2007)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Returning to Framing the Question

Consider Local Inertial Frame

Effect of GW in LIF is that of a Newtonian Force

$$\frac{d^2\xi_i}{d\tau^2} \simeq -\frac{F_i}{m} \qquad \qquad \frac{d^2\xi_i}{d\tau^2} \simeq -\partial_i \Gamma_{00}^j \xi^i \qquad \qquad F_i \simeq \frac{m}{2} \ddot{h}_{ij}^{\text{TT}} x^i$$

Long-wavelength approximation valid because materials have $c_{\rm s} \ll 1$

$$ds^2 \simeq -dt^2(1 + R_{0i0j}x^ix^j) - rac{4}{3} dt \, dx^i \left(R_{0ijk}x^jx^k
ight) + dx^i \, dx^j \left(\delta_{ij} - rac{1}{3}R_{ikjl}x^kx^l
ight)$$
e.g. Maggiore

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of $h \mbox{ or } F$

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right) = 0$$

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Physical current itself also changing at O(h)

 \Rightarrow

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Physical current itself also changing at O(h)

Boundaries also changing at O(h)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} + h^{\mu}_{\ \alpha} F^{\alpha\mu} + h^{\mu}_{\ \alpha} F^{\alpha\mu} + h^{\mu}_{\ \alpha} F^{\mu} + h^{\mu}_{\ \alpha} F$$

Physical current itself also changing at O(h)

Boundaries also changing at O(h)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Cavity Regime

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Physical current itself also changing at O(h)

Boundaries also changing at O(h)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Cavity Regime

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Physical current itself also changing at O(h)

Boundaries also changing at O(h)

Conductive Walls shield AC components of applied B-field

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Cavity Regime

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Physical current itself also changing at $\mathcal{O}(h)$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Axion Cavity Modes Couple to GWs

$$\eta \propto \int_V \mathbf{E}_{\mathrm{cav}}^* \cdot \mathbf{J}_{\mathrm{eff}}$$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Axion Cavity Modes Couple to GWs 90° 0.140.12 45° 135° 0.10 h_{\times} TM_{01p} 0.080.06 $\eta \propto \int_V \mathbf{E}_{\mathrm{cav}}^* \cdot \mathbf{J}_{\mathrm{eff}}$ 180° 0° ß 225° 315° 270° p = 0p = 2p = 1

Berlin, Blas, D'Agnolo, SARE, Harnik, Kahn, Schutte-Engel (PRD 2022)

Axion Cavity Modes Couple to GWs But TM modes not optimal... 90° 0.140.12 45° 135° 0.10 h_{\times} TM_{01p} 0.080.06 $\eta \propto \int_V \mathbf{E}_{\mathrm{cav}}^* \cdot \mathbf{J}_{\mathrm{eff}}$ 180° 0° ß 225° 315° 270° p = 0p = 2p = 1

Berlin, Blas, D'Agnolo, SARE, Harnik, Kahn, Schutte-Engel (PRD 2022)

Coherent GW $P_{\rm sig} = \frac{1}{2} Q \,\omega_g^3 \, V_{\rm cav}^{5/3} \, (\eta_n \, h_0 \, B_0)^2$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Schott, Blas, Budker, Gatti (2024)

Effective current from spatial or temporal variations of h or F

$$j_{\rm eff}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Physical current itself also changing at O(h)

Boundaries also changing at O(h)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Effective current from spatial or temporal variations of h or F

$$j_{\text{eff}}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \right)$$

Physical current itself also changing at O(h)All detector components effectively free-falling: use TT frame

Boundaries also changing at $\mathcal{O}(h)$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Axion conversion in a b.g. magnetic field:

$E_a \sim -g_{a\gamma\gamma} a B_0 e^{-i\omega t}$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Axion conversion in a b.g. magnetic field:

$$E_a \sim -g$$

GW conversion in a b.g. magnetic field (in TT gauge):

$$\boldsymbol{E}_{v}^{p} = -\frac{B_{0}}{2} \left[i\omega x (h_{\times} \boldsymbol{\hat{p}} - \boldsymbol{\hat{p}}) \right]$$

$g_{a\gamma\gamma}a B_0 e^{-i\omega t}$

 $+h_{+}\hat{\boldsymbol{s}})+h_{\times}s_{\theta}\hat{\boldsymbol{k}}|e^{-i\omega(t-\hat{\boldsymbol{k}}\cdot\boldsymbol{x})}$

Domcke, SARE, Kopp (2024)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Axion conversion in a b.g. magnetic field:

$$E_a \sim -g$$

GW conversion in a b.g. magnetic field (in TT gauge):

$$m{E}_v^p = -rac{B_0}{2} \left[i\omega x (h_{ imes} \hat{\pmb{p}} + h_{+} \hat{\pmb{s}}) + h_{ imes} s_{ heta} \hat{\pmb{k}}
ight] e^{-i\omega(t - \hat{\pmb{k}} \cdot \pmb{x})}$$

$g_{a\gamma\gamma}a B_0 e^{-i\omega t}$

SARE, Kopp (2024)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Axion conversion in a b.g. magnetic field:

$$E_a \sim -g$$

GW conversion in a b.g. magnetic field (in TT gauge):

$$m{E}_v^p = -rac{B_0}{2} \left[i\omega x (h_{ imes} \hat{\pmb{p}} + h_{+} \hat{\pmb{s}}) + h_{ imes} s_{ heta} \hat{\pmb{k}}
ight] e^{-i\omega(t - \hat{\pmb{k}} \cdot \pmb{x})}$$

$g_{a\gamma\gamma}a B_0 e^{-i\omega t}$

SARE, Kopp (2024)

Consequence of mass degeneracy of photon and GW in vacuum

Disks giveth, but disks also taketh away

Domcke, SARE, Kopp (2024)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Fully resonant approach requires scan, but improves sensitivity by ~ 10

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Fully resonant approach requires scan, but improves sensitivity by ~ 10

Hybrid w/ half disks, half vacuum

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Fully resonant approach requires scan, but improves sensitivity by ~ 10

Hybrid w/ half disks, half vacuum

Take out disks, fully broadband

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Fully resonant approach requires scan, but improves sensitivity by ~ 10

Hybrid w/ half disks, half vacuum

Take out disks, fully broadband

Note ωL enhancement from vacuum conversion

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Fully resonant approach requires scan, but improves sensitivity by ~ 10

Hybrid w/ half disks, half vacuum

Take out disks, fully broadband

Note ωL enhancement from vacuum conversion

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

No-Disc MADMAX for PBHs 10^{25} 10^{24} 10^{-2} Take out disks, fully broadband 10^{-3} Binary Distance d_{PBH} [pc] Heliopause 10^{-4} 10^{-5} 1 A.U. **Typical distance to binary** 10^{-6} frequenc. $\sim 10 \text{ kpc}$ Franciolini, Maharana, Muia (2022) 10^{-1} 10^{-8} -Earth-Moon distance Improves on resonant cavity 10^{-9} 10^{-10} 10^{-9}

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Low-Frequency Regime

Effective current from spatial or temporal variations of h or F

$$j_{\rm eff}^{\mu} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - \frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} \right)$$

Physical current itself also changing at O(h)

Boundaries also changing at O(h)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Low-Frequency Regime

Effective current from spatial or temporal variations of h or F

Physical current itself also changing at O(h)

Boundaries also changing at $\mathcal{O}(h)$

Less relevant due to rigidity of photons, responding at *c*

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Low-Frequency Regime

Effective current from spatial or temporal variations of h or F

Physical current itself also changing at O(h)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Transfer function for mechanical transduction

$$\left(\omega_m^2 - \omega^2 + i\frac{\omega\omega_m}{Q_m}\right)\tilde{u}_m(\omega) \simeq -\frac{\omega_g^2 L}{2}\tilde{h}^{\mathrm{TT}}(\omega)$$
$$\left(\omega_1^2 - \omega^2 + i\frac{\omega\omega_1}{Q}\right)\tilde{e}_1(\omega) \simeq \int d\omega'\tilde{e}_0(\omega - \omega')g_m\tilde{u}_m(\omega')$$

$$g_m \equiv -\frac{2\omega_1^2}{L}$$

$$\mathcal{T}_{\rm mech}^2(\omega) = \frac{\omega_g^4 \omega_1^4}{\left((\omega_1^2 - \omega^2)^2 + \frac{\omega^2 \omega_1^2}{Q^2}\right) \left((\omega_1^2 - \omega^2)^2 + \frac{\omega^2 \omega_1^2}{Q^2}\right)}$$

D'Agnolo, SARE (gr-qc/2412.17897)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Magnetic Weber Bar

Fig. 10. GE 9.4 T MRI magnet before shipment.

TABLE II PARAMETERS OF GE 9.4 T MRI MAGNET

Central Field B ₀ (T)	9.4
$\mathbf{B}_{\text{peak}}/\mathbf{B}_0$	1.024
Uniformity at 40cm DSV, peak-to-peak	5 ppm
Stored energy (MJ)	140
Conductor length (km)	540
Conductor weight (ton)	30
Magnet weight (ton)	45
Magnet length (m)	3.1
Room shielding weight (ton)	520

Domcke, SARE, Rodd (2024)

140 MJ stored energy $\leftrightarrow S_h^{1/2} \sim 10^{-21} \,\mathrm{Hz}^{-1/2}$ (up to transfer function)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Fig. 10. GE 9.4 T MRI magnet before shipment.

TABLE II PARAMETERS OF GE 9.4 T MRI MAGNET

Central Field B ₀ (T)	9.4
$\mathbf{B}_{\text{peak}}/\mathbf{B}_0$	1.024
Uniformity at 40cm DSV, peak-to-peak	5 ppm
Stored energy (MJ)	140
Conductor length (km)	540
Conductor weight (ton)	30
Magnet weight (ton)	45
Magnet length (m)	3.1
Room shielding weight (ton)	520

Domcke, SARE, Rodd (2024)

140 MJ stored energy $\leftrightarrow S_h^{1/2} \sim 10^{-21} \,\mathrm{Hz}^{-1/2}$ (up to transfer function)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Fig. 10. GE 9.4 T MRI magnet before shipment.

TABLE II PARAMETERS OF GE 9.4 T MRI MAGNET

Central Field $B_0(T)$	9.4
$\mathbf{B}_{\text{peak}}/\mathbf{B}_0$	1.024
Uniformity at 40cm DSV, peak-to-peak	5 ppm
Stored energy (MJ)	140
Conductor length (km)	540
Conductor weight (ton)	30
Magnet weight (ton)	45
Magnet length (m)	3.1
Room shielding weight (ton)	520

Domcke, SARE, Rodd (2024)

140 MJ stored energy $\leftrightarrow S_h^{1/2} \sim 10^{-21} \,\mathrm{Hz}^{-1/2}$ (up to transfer function)

Operates in the regime $\omega_1 \gg \omega_g \gg \omega_m$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Fig. 10. GE 9.4 T MRI magnet before shipment.

TABLE II PARAMETERS OF GE 9.4 T MRI MAGNET

Central Field $B_0(T)$	9.4
$\mathbf{B}_{\text{peak}}/\mathbf{B}_0$	1.024
Uniformity at 40cm DSV, peak-to-peak	5 ppm
Stored energy (MJ)	140
Conductor length (km)	540
Conductor weight (ton)	30
Magnet weight (ton)	45
Magnet length (m)	3.1
Room shielding weight (ton)	520

$ au^2$	$\left(\right)$)
/ mech	(ω))

Domcke, SARE, Rodd (2024)

140 MJ stored energy $\leftrightarrow S_h^{1/2} \sim 10^{-21} \,\mathrm{Hz}^{-1/2}$ (up to transfer function)

Operates in the regime $\omega_1 \gg \omega_g \gg \omega_m$

$$= \frac{\omega_g^4 \omega_1^4}{\left((\omega_1^2 - \omega^2)^2 + \frac{\omega^2 \mathcal{T}}{Q^2}\right) \left((\omega_m^2 - \omega_g^2)^2 + \frac{\omega_g^2 \omega^2}{\mathcal{Q}_m^2}\right)}$$

Expect $\mathcal{T} \sim 1$

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

TABLE II PARAMETERS OF GE 9.4 T MRI MAGNET

Central Field $B_0(T)$	9.4
$\mathbf{B}_{\text{peak}}/\mathbf{B}_0$	1.024
Uniformity at 40cm DSV, peak-to-peak	5 ppm
Stored energy (MJ)	140
Conductor length (km)	540
Conductor weight (ton)	30
Magnet weight (ton)	45
Magnet length (m)	3.1
Room shielding weight (ton)	520

Domcke, SARE, Rodd (2024)

Heuristics confirmed in detailed calculation...

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

TABLE II PARAMETERS OF GE 9.4 T MRI MAGNET

Central Field $B_0(T)$	9.4
$\mathbf{B}_{\text{peak}}/\mathbf{B}_0$	1.024
Uniformity at 40cm DSV, peak-to-peak	5 ppm
Stored energy (MJ)	140
Conductor length (km)	540
Conductor weight (ton)	30
Magnet weight (ton)	45
Magnet length (m)	3.1
Room shielding weight (ton)	520

Domcke, SARE, Rodd (2024)

Heuristics confirmed in detailed calculation...

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

TABLE II PARAMETERS OF GE 9.4 T MRI MAGNET

Central Field $B_0(T)$	9.4
$\mathbf{B}_{\text{peak}}/\mathbf{B}_0$	1.024
Uniformity at 40cm DSV, peak-to-peak	5 ppm
Stored energy (MJ)	140
Conductor length (km)	540
Conductor weight (ton)	30
Magnet weight (ton)	45
Magnet length (m)	3.1
Room shielding weight (ton)	520

Domcke, SARE, Rodd (2024)

Heuristics confirmed in detailed calculation...

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves

Domcke, SARE, Rodd (2024)

Domcke, SARE, Rodd (2024)

Domcke, SARE, Rodd (2024)

Conclusions

Identify regime of GW by hierarchy with respect to size of detector: • Resonant regime: $\omega_g \sim 1/L \gg c_s/L$ — use PDF and account for current & boundary changes e.g. axion cavity experiments • High-frequency regime: $\omega_g \gg 1/L \gg c_s/L$ — use TT gauge e.g. MADMAX • Low-frequency regime: $1/L \gg \omega_g$ — use PDF and account for current & **boundary changes** e.g. Magneto-quasistatic experiments e.g. Heterodyne experiments

Berlin, Blas, D'Agnolo, SARE, Harnik, Kahn, Schutte-Engel (2021)

Domcke, Ellis, Kopp (2024)

Domcke, Garcia-Cely, Rodd (2022) Domcke, Garcia-Cely, Lee, Rodd (2023) Domcke, Ellis, Rodd (2024)

Berlin, Blas, D'Agnolo, SARE, Harnik, Kahn, Schutte-Engel, Wentzel (2023)

Sebastian A. R. Ellis — Electromagnetic Detection of Gravitational Waves