
Improving Continuous
Testing Infrastructure

of Xsuite

22 August 2024

By: Benchaphorn Chanprasertkul

Supervised By:
Giovanni Iadarola
Szymon Lopaciuk

TABLE OF CONTENTS

01Introduction

Background

Methods

Results and
Conclusion

04

03

02

Introduction

01

Platform
It operates across various
computing platforms, including
CPUs and GPUs.

Python packages

Xsuite is a collection of Python packages
designed for simulating beam dynamics in
particle accelerators.

Xsuite Overview

OpenstackDocker

- Utilizes GitHub Actions with Docker or Podman containers to ensure tests
run in isolated environments

- CERN-hosted VMs with GPUs on OpenStack, which provide a scalable and
flexible testing environment through rapidly configurable virtual machines.

GitHub Actions

The current testing framework

Openstack DockerGitHub Actions

Testing Workflow

GitHub

Run Connects Sets up Run tests

Tests

Background

02

Testing Challenges
Docker Builds
Docker images were built separately on each test runner, leading to redundant resource use and an opaque process.

Limited Input Capacity in GitHub Dispatch
The GitHub dispatch system was limited to 10 inputs, which restricted our ability to run comprehensive tests. We
use these inputs to specify different test packages, and as we added more packages, the 10-input limit became a
problem, preventing us from fully testing all component.

Absence of Summary Displays in GitHub Actions
GitHub Actions didn’t provide a direct summary of test results, making error identification and debugging more difficult.

Lack of Consolidated Test Results
There was no automatic summary of test outcomes, making it challenging to quickly assess and track performance
metrics over time, we later implemented a solution using HTCondor to run multiple test sessions and gather detailed
statistics.

Methods

03

Fig 1 : Pipeline of Docker Image Management.

Docker Image Management

Example Use Case (Xsuite Daily testing)

Fig 2 : Use Case of Xsuite Daily testing.

Testing Execution
Flexible Test Configuration
Utilize a JSON configuration approach to address limitations in workflow input capacity, Allowing for easy
adjustment of test parameters and the inclusion of various Xsuite packages without the core workflow.

Subset Testing
The manual test execution process was enhanced by enabling the specification of subsets of tests though arbitrary
options passed to pytest.

Fig 3 : Input of subsets testing.

Automated Analytics Tools

Automated Error Detection and Reporting

GitHub Actions now automatically extracts and summarizes errors in Markdown format within the
workflow. Failures are highlighted and detailed in a collapsible section, improving error visibility and
simplifying debugging.

Test Result Analysis Script

A custom script analyzes test outcomes, generating metrics like pass/fail rates and test durations
in CSV files. It tracks non-deterministic test failures and identifies slow tests, aiding in performance
optimization and proactive issue resolution.

Results and Conclusion

04

Results and Conclusion
Automated Error Detection and Reporting

GitHub Actions now automatically extracts and summarizes errors in Markdown format within the workflow. Failures
are highlighted and detailed in a collapsible section, improving error visibility and simplifying debugging.

Fig 4 : Summarizes errors in Markdown format .

Results and Conclusion
Flexibility Improvements
JSON-based configurations and subset testing allowing for more efficient and targeted testing through GitHub Actions.

Fig 5 : Subsets test running.

Results and Conclusion

Analytical Insights
The custom script for test result analysis has proven invaluable. By providing detailed metrics such as pass/fail rates
and test durations in an easily accessible CSV and graphical format

Fig 6 :Results of tests in CSV files.

Results and Conclusion

Fig 7 :Fail rates of xtrack with 675 sample size.

Results and Conclusion

Fig 8 : Fail rates of xcoll with 298 sample size.

Results and Conclusion

Fig 9 : Sorted Average Test Durations for 20 Tests with Durations in the xtrack Package.

Results and Conclusion

Limitations

Storage Limitations : GitHub’s 90-day limit on logs and 500 artifact cap can restrict long-term data
access, but custom retention policies help manage this.

Future Work

Using CERN tools to build the image: Integration of CERN's GitLab CI/CD infrastructure into our
processes.

Thank You for your
Attention

