

Introduction to FLUKA

Beginner course – CERN, December 2024

Where we come from

- FLUKA was born in the 60's at **CERN** with Johannes Ranft
- It was further developed in the 70s and 80s in a collaboration between Leipzig University, CERN and Helsinki University of Technology for applications, e.g., at CERN's high energy accelerators, and in the 90s with INFN, among others for the design of SSC and LHC
- From 2003 until August 2019 maintained and developed under a CERN & INFN agreement
- From December 2019, new **CERN** distribution aiming to ensure FLUKA's long-term sustainability and capability to meet the evolving requirements of its user community, welcoming contributions by both established FLUKA contributors as well as new partners within an **international collaboration**.
- Presently a joint development & management team based in the CERN Accelerators and Technology Sector and Radiation Protection Group and at ELI-Beamlines (Prague), with contributors from the CERN Research and Computing Sector, JRC-Geel, ANL, BNL, and STFC, is in place.

FLUKA.CERN distribution

https://fluka.cern

Licensing Scheme

- Licenses are free except for commercial use
- They are granted for **non-military use** only
- For central FLUKA installations on computing clusters of universities/institutes it is not necessary to obtain an Institutional FLUKA Licence. However, it is mandatory that all FLUKA users register on this website and accept the Single User Licence Agreement.

Recent developments	FLUKA 2011-3	December 2019
of FLUKA CERN	FLUKA 4-0	June 2020
	FLUKA 4-0.1	August 2020
Coherent transport effects for charged particles in bent crystals ; electric field in vacuum; electronuclear reactions; direct (p,n) reactions.	FLUKA 4-1	November 2020
Compound nucleus spin and parity accounted for in evaporation and Fermi break-up;	FLUKA 4-1.1	February 2021
new generation source routine for users.	FLUKA 4-2	October 2021
Low-energy deuteron interaction model; proton reaction cross section refinement; ICRP116 and ICRU95 dose equivalent conversion coefficients; simplified out-of-the-box	FLUKA 4-2.1	December 2021
usage of multiple magnetic fields	FLUKA 4-2.2	March 2022
Point-wise treatment for low-energy neutron interactions; synchrotron radiation	FLUKA 4-3	September 2022
emission during charged particle tracking	FLUKA 4-3.1	December 2022
	FLUKA 4-3.2	March 2023
	FLUKA 4-3.3	May 2023
	FLUKA 4-3.4	September 2023
Proton nuclear elastic scattering improvement at low energies; gamma cascade improvement for thermal neutron capture; (d,2n) improvement on heavy targets	FLUKA 4-4	February 2024
	FLUKA 4-4.1	July 2024
	FLUKA 4-5	January 2025

The most recent reference

New Capabilities of the FLUKA Multi-Purpose Code

 Please always check the FLUKA.CERN website for the updated list of references that should be cited in publications: <u>https://fluka.cern/documentation/references</u>

TABLE OF CONTENTS
Abstract
1 Introduction
2 New Physics Developments
3 Flair, the FLUKA User Interface
4 Radiation to Electronics
5 Code Testing and Benchmarking
6 Outlook
Data Availability Statement
Author Contributions
Conflict of Interest
Publisher's Note
Acknowledgments
Footnotes
References

Quality assurance

- Multi-layered testing strategy
- Dedicated validation suite, called FLUKAVAL, with several hundreds test cases and detailed reports prior to public release
- Regression checks among releases, benchmarks against experimental data, MC results inter-comparisons
- Generic infrastructure: FLUKA v4 and v5 support

User Support

FLUKA User Forum

https://cern.ch/fluka-forum

Note: an independent one-time registration is required to be able to participate

FLUKA Training

https://indico.cern.ch/category/9178

- Beginner and advanced courses are held on a ٠ regular basis across the world
- The first topical course (on Radiation Protection) ٠ was held last week

Announcements As of December 2019, this discussion list represents the	1 / week	F Release of FLUKA 4-4.1 ■ Announcements
and its graphical user interface Flair, distributed by the European Organization for Nuclear Research (CERN).		IMPORTANT: Registration and Ackage download FAQ
Installation Category for questions related to the installation of FLUKA	1 / week	Installation Water HVL with iodine131
Flair	1 / week	Physics, Transport and Magnetic Fields
Category for questions related to the graphical user nterface Flair.		How to read Fluka Output file Running and Runtime Errors
Running and Runtime Errors Category for questions related to running FLUKA and Flair.	4 / week	Fluka can implement a 'for loop' ? like C++ Running and Runtime Errors
Source Definition Category for questions concerning built-in source options, like particle beams, hadron-hadron collisions or isotropic sources	220	How to understand the tab.lis file of the USRBDX output? Scoring
Geometry and Materials	3 / week	C Error with DISCARD card Running and Runtime Errors
Scoring	2 / week	K run stopped **** Running and Runtime Errors
Physics, Transport and Magnetic Fields Category for physics-related questions, as well as	271	Getting a floating point error when running the example
Advanced Features and User Routines Category for questions on biasing, user routines, and other advanced features.	2 / week	 Particle age sampling- difference between the sampling source and the output Advanced Features and User Routines
FLUKA - Geant4 Interface Questions on the FLUKA-Geant4 interface, which gives access to the FLUKA hadron inelastic interaction	2	Using mgdraw.f for photon source
treatment from any Geant4 application. FLUKA papers This category offers the FLUKA.CERN users the	1 / week	Error: in position *** is now causin trouble, requesting a step of *** cm Geometry and Materials
possibility to share their published papers and		

1

2

1

1

1

9

4

2 9h

4

1

1

1

Flair

https://flair.cern

Authors

authors: Vasilis Vlachoudis *(lead author)* Christian Theis Wioletta Kozlowska

Current Version

- Latest version: 3.3-1
- Released on: Tue 05-Mar-2024
- Powered by python3, tkinter, gnuplot, pydicom

Features

- modern and intuitive design
- Input editor for error free inputs
- Interactive geometry editor, photorealistic ray tracer and debugger
- run and monitor the simulation
- back-end for post-processing of results
- I/O of other simulation formats (MCNPX,GDML,...)
- Medical file importing, DICOM, RT-PLAN, DOSE,...
- extended material library

Microscopic process modeling for macroscopic quantity assessment

A (hadronic) shower implies a lot of different physics processes, touching a very broad energy [time-space] scale

Its description relies on the organic integration of diverse **theories and models**, and requires as essential pieces of **information**:

- reaction cross sections
- exclusive fragment production
- nuclide structure and decay data
- evaluated quantities of neutron induced reactions

Monte Carlo simulation is an effective way to calculate macroscopic quantities (such as energy deposition, dpa, particle fluence, activation and residual dose rate) with an accuracy reflecting the quality of the implementation of critical processes

Multipurpose codes are widely available: FLUKA, GEANT4, MCNP, PHITS, MARS...

FLUKA capabilities

- hadron-hadron and hadron-nucleus interactions
- nucleus-nucleus interactions (including deuterons!)
- photon interactions (>100 eV)
- electron interactions (> 1 keV; including electronuclear)
- muon interactions (including photonuclear)
- neutrino interactions
- low energy (<20 MeV) neutron interactions and transport
- particle decay
- ionization and multiple (single) scattering (including all ions down to 1 keV/u)

- coherent effects in crystals (channelling)
- magnetic field, and electric field in vacuum
- combinatorial geometry and lattice capabilities
- voxel geometry and DICOM importing
- analogue or biased treatment
- on-line buildup and evolution of induced radioactivity and dose
- built-in scoring of several quantities (including DPA and dose equivalent)

In support of a wide range of applications

✓ Accelerator design
✓ Particle physics
✓ Cosmic ray physics
✓ Neutrino physics
✓ Medical applications

✓ Radiation protection (shielding design, activation)

✓Dosimetry

- ✓ Radiation damage
- ✓ Radiation to electronics effects
- ✓ ADS systems, waste transmutation
- ✓Neutronics

Next release (early 2025): **Unstructured mesh geometries** [I]

Unstructured mesh is a tessellation of the Euclidean space by simple solids, such as tetrahedra, in an irregular pattern (different sizes and shapes). Supported solids are tetra-, penta-, hexahedra of 1st order.

Supported input formats:

TetGen (used by PHITS) Abaqus (used by MCNP6) ANSYS (used by ANSYS FEM) Or a combination of them!

(a) Tetrahedron

(c) Hexahedro

ICRP P145 phantom (initialization < 10 s)

Next release (early 2025): Unstructured mesh geometries [II]

For CAD models until now: support via fluDAG interface only (CAD models \rightarrow Cubit \rightarrow DAGMC \rightarrow FluDAG);

from now on: also supported via unstructured meshes!

Note that a CAD \rightarrow unstructured mesh conversion must be performed beforehand using external tools

(gmesh, TetGen, ANSYS, Cubit, Attila4MC, ...).

Performance: ~20% overhead versus simplified CGs in the tested studies.

Next release (early 2025): **Automatic Importance Biasing** Automatically biased

AUTOIMBS Opt: **v** Spatial limits: **bias v** Voxel size: ROI: Air_Outs ▼ ROI: ▼ ROI: ▼ ROI: ▼

Region surrounding the room

Surface enclosing the geometry

Transport cask stored within concrete walls, *neutron source filling the cask*

Analogue

Introduction to FLUKA

0.01

0.001

0.0001 1e-05 1e-06

1e-07 1e-08 1e-09

1e-10 1e-11

1e-12 1e-13 1e-14 1e-15 1e-16 1e-17 1e-18

1e-19

[∐]1e-20

[1/cm2/pr

fluence

Neutron

Some examples

Accelerator geometries

LHC IR7 long straight section

From detailed models of accelerator components with associated scoring and the element sequence and respective magnetic strengths, as given in the machine optics (twiss) files...

...the automatic construction of complex beam lines, including collimator settings and element displacement (BLMs), is achievable, profiting from roto-translation directives and replication (lattice) capabilities.

LINE BUILDER

[A. Mereghetti et al., IPAC2012, WEPPD071, 2687] cds.cern.ch/record/1481554

Beam loss description at the LHC

[A. Lechner et al., Phys. Rev. AB 22 (2019) 071003]

Activation benchmarking

@ CERN SHIELDING BENCHMARK FACILITY (24 GeV/c p)

Situated laterally above the CHARM target

for deep shielding penetration studies (Detector calibration, Detector inter-comparison, Activation)

360cm of concrete and barite concrete

plus 80cm of cast iron

11 Bismuth and Aluminum samples at different heights in CSBF and also inside CHARM (@ -80cm)

Height

@ CHARM (CERN High energy AcceleRator Mixed field facility,

Concrete [cm]

(a)

to study radiation effects on electronic components)

₩2

5 x 10¹¹ protons/pulse, 350ms pulse length, max. average beam intensity 6.6 x 10^{10} p/s

200

three 50cm long 8cm diameter targets: Copper, Aluminum, Aluminum with holes

https://doi.org/10.1080/00223131.2023.2239243

150

Concrete (cm

(b)

200

40

(c)

Steel [cm]

60

80

100

Medical physics: radiotherapy

Bragg peak in a water phantom 400 MeV/A C beam: The importance of fragmentation

[Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 122 (1-4) (2006) pp 485-487 Simulation: A. Mairani PhD Thesis (2007) and G. Battistoni et al., Nuovo Cimento C 31 (2008) pp 69-75]

Dosimetry and cosmic rays

- Complete simulation of cosmic ray interactions in the atmosphere, by means of a dedicated CR package available to users
- Model of airplane geometry
- Response of dosimeters

[Data: V. Mares, et al., NIM A 476 (2002), pp 341–346 Solid lines: FLUKA simulation S. Roesler et al., Rad. Prot. Dosim. 98 (2002) pp 367-388] Ambient dose equivalent from neutrons at solar maximum on commercial flights from Seattle to Hamburg and from Frankfurt to Johannesburg

Course programme

Course programme

- A very hands-on course
- Almost all lectures come with an attached exercise session
- The course is Flair-based
- Plenty of opportunities to practice the workflow
- The entire teacher team is available to offer assistance during the exercise sessions
- All exercise solutions are explained and provided

Schedule of the week

	8		9		10			11		12		13		14	15		16		17	18
Monday		Registra- tion	Introduction	n to T+P Introd uction	Monte Ca	rlo Basic	s Co	ffee	Ba	asic Input / duction to Flair		Lunch		Geometry	l Geor	netry I	Co	ffee Materials	Materials	
Tuesday		Ir	Scoring I : ntro & USRBIN	I Int	Scoring I : tro & USRBI	N	Coffee	Geor Ed	metry litor	Geometry Ed	litor	Lunch		Simple Sources	Simple Sour	ces	Coffee	EM fields	EM fields	
Wednesday		т	EM & hresholds	EM & Th	resholds	Coffee		Biasing		Biasing		Lunch	9 [Scoring II: Diff. Spec.	Scoring II: Diff.	Spec.	Coffee	Standard Output and Errors	Standard Output and Errors	
Thursday			Neutronics		Neutronics	c	Coffee	Hadron	n Physics	Geometry II		Lunch	G	eometry ll	Source Routine	Coffe	e S	ource Routine		
Friday			Radioprotection Activation	n and	Radioprote Activa	ction an ation	od Co	ffee	w	rap Up Exercis	se	Lunch		Course Evaluation	Advanced Topics	Coffe	e	Visit of CE	RN facilities	

In conclusion

- While a beginner course, by the end of the week you will be able to tackle even notso-simple problems
- Let us know of any technical/installation problems ASAP
- Do not hesitate to ask questions and to ask for help! ③

