

Low energy (≤20MeV) neutron interactions

Beginner course – CERN, December 2024

Outline

- Some neutron physics and neutron interactions below 20 MeV (small reminder above 20 MeV in passing)
- Group-wise treatment:
 - Legacy treatment
- Point-wise treatment:
 - Introduced in v4-3.0
 - Default from v4-4.0 for DEFAULTS: NEW-DEFA, PRECISION, DAMAGE
- Reminder: lethargy units

Why neutrons?

- Even when not studying a neutronics problem, neutrons can be generated as secondary particles
- They can induce significant backgrounds in detectors, e.g. via neutron capture or recoil generation
- Important for shielding considerations: high penetration (and even multiplication)
- They can activate/damage materials
- Significant even at very low energies (transport down to 10⁻¹⁴ GeV in FLUKA): high-energy secondaries can be produced by near zero-energy neutrons
- Interaction probability varies wildly with neutron energy and target nucleus →
 - ...and cannot be theoretically predicted
- A special treatment is clearly required

P. Schillebeeckx et al., "Neutron Resonance Spectroscopy for the Characterisation of Materials and Objects", Report EUR 26848 EN (2014) DOI: 10.2787/98278

Low-energy neutron interactions

FLUKA

Neutron interactions in FLUKA - in a nutshell

- Above 20 MeV, neutrons are treated in FLUKA on equal footing with other hadrons:
 - Nuclear elastic scattering: based on the Ranft model (J. Ranft, Part. Acc. 3 129-161, 1972)
 - Nuclear inelastic interactions: FLUKA's hadron-nucleus reaction model (PEANUT)
- Below 20 MeV ("low energy neutrons" in FLUKA slang), cross sections exhibit a rich structure of resonances:
 - No effective model to capture/describe resonances in a systematic way
 - One must resort to evaluated nuclear data (for both group- and point-wise approaches, see below)
- Neutron decay (mean life-time of 879.6 s, *i.e.* about 15 min): $n \rightarrow p + e^{-} + \bar{v}_{e}$
- Gravitational effects* (meV n over 100s of m, e.g. in time-of-flight experiments)

* not modelled in FLUKA

Neutron moderation

- Neutrons are "moderated" (*i.e.* their kinetic energy is progressively reduced) through successive scattering with the surrounding nuclei in which a fraction of the energy is transferred to the nucleus
- An ideal neutron moderator has low atomic mass (to maximise energy transfer per collision), a high neutron scattering cross section (to maximise collisions), a low neutron capture cross section (to reduce depletion of the neutron population) and is resistant to high levels of radiation
 - Typically in reactors: light/heavy water (¹H and ²H) (and ¹⁶O present), carbon (graphite) ¹²C
- Eventually, neutrons are "thermalised"

Neutron thermalisation

- Thermal motion energy: O(kT)
- At 296 K, *kT*=25.5 meV
- At/near these energies, neutrons collide elastically (losing or gaining energy) in a "gas" of nuclei, eventually reaching thermal equibrium
- The energy distribution of non-relativistic classical particles in thermodynamic equilibrium at temperature *T* is given by the Maxwell-Boltzmann distribution:

$$\frac{\mathrm{d}n}{\mathrm{d}E} = 2\sqrt{\frac{E}{\pi}} \left(\frac{1}{kT}\right)^{3/2} \mathrm{e}^{-E/kT} \qquad \operatorname{argmax}(E) = \frac{kT}{2}$$

 In lethargy representation*, maximum shifts to higher energies

* recall the scoring lecture, and see later

Thermalisation in H₂O

- Example: n pencil beam, E=1 MeV, impinging on a water cylinder (r=50 cm, varying h)
- $\lambda_{(n,el)}(1 \text{ MeV}) = 3.5 \text{ cm}$ (in water)
- For $h \ll \lambda_{(n,el)},$ n barely scatter
- For $h \sim \lambda_{(n,el)}$, n start to scatter elastically:
 - Change direction (possibly staying longer in the cylinder)
 - Lose energy: possibly probing energy ranges where (n,el) cross section drastically increases
- For $h \gg \lambda_{(n,el)}$:
 - Intensive elastic scattering
 - Thermal equilibrium: Maxwell-Boltzmann flux*:

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E} = \frac{\mathrm{d}n}{\mathrm{d}E}v(E) = 2^{3/2} \frac{E}{\sqrt{m\pi}} \left(\frac{1}{kT}\right)^{3/2} \mathrm{e}^{-E/kT}$$

 (n,γ) on either ^{1,2}H or ^{16,17,18}O eventually consumes the neutron flux in favor of MeV photons

Varying h, here e.g. h=100 cm

Neutronics

^{*} Small detail discussed later: $S(\alpha,\beta,T)$

Thermalisation at different temperatures

- The thermal peak indeed shifts linearly with the temperature
- Energies below about O(1) eV are loosely called "thermal"

Neutron reactions of interest

 $^{1}H(n,el) | ^{2}H(n,el) | ^{10}B(n,\alpha) | ^{nat}Cd(n,\gamma) | ^{235}U(n,f)$

¹H(n,el)

- Maximum energy transfer from n to $^1\text{H},$ i.e. a proton (for $\text{E}_{kin} \ll m_n$):

$$E_{\rm rec,max} = \frac{4m_p m_n E_{\rm kin}}{(m_p + m_n)^2} \approx E_{\rm kin}$$

- (not necessarily the most likely energy transfer!)
- In few collisions, n have the chance to transfer a large fraction of kinetic energy to target ¹H
- n energy quickly drops below the eV domain, where $\sigma_{(n,el)}$ increases drastically as 1/v, i.e. $1/\sqrt{E}$
- At these energies, σ(n,γ) becomes sizeable: capture depletes the neutron flux generating MeV photons (!)
- One must track neutrons down to thermal energies

²H(n,el)

- We already saw: compounds containing ¹H are good neutron moderators
- But ¹H has a sizeable (n,γ) cross section. At thermal energies:
 - $\sigma_{(n,\gamma)} / \sigma_{(n,el)} \sim 10^{-2}$ for ¹H
 - $\sigma_{(n,\gamma)}/\sigma_{(n,el)} \sim 10^{-4}$ for ²H
- For applications requiring a high thermal neutron flux, it is advantageous to employ ²H (fewer neutrons captured on the way to thermalisation)
- ²H still has good moderator properties:

$$E_{\rm rec,max} = \frac{4m_d m_n E_{\rm kin}}{(m_d + m_n)^2} \approx \frac{8}{9} E_{\rm kin}$$

¹⁰B(n,α)

- $\sigma_{(n,el)}$ is only slightly lower than for ^{1,2}H
 - But: $E_{rec,max}(n \text{ on } {}^{10}B) \ll E_{kin}$
 - ¹⁰B is not as effective a moderator as ^{1,2}H
- However, the ${}^{10}B(n,\alpha)$ channel has a very large σ : ${}^{10}B+n \rightarrow {}^{7}Li + \alpha + \gamma$
 - $\sigma \sim 10^3 10^5$ b, i.e. mean free paths $\ll 100 \ \mu m$
 - ⁷Li and α have short range (< 10 μ m)
- Basis for various applications:
 - boron neutron capture* therapy (BNCT)
 - boron rods in nuclear power plants to control n flux
 - borated moderators: reduction of neutron fluence and of MeV photon background from neutron capture in ¹H

nat**Cd(n,γ)**

- $\sigma_{(n,el)}$ is slightly lower than for ^{1,2}H, but $E_{rec,max}(n \text{ on }^{nat}Cd) \ll E_{kin}$
- ^{nat}Cd is less effective than ^{1,2}H as a moderator
- (n,γ) dominates at energies below 1 eV:
 - Resonance (thousands of barns!) at ~0.2 eV
 - Mean free paths \ll 100 μm (!)
- neutrons with energies below eV are promptly converted into photons of O(100 keV)-O(10 MeV)
- Resonances:
 - Present in neutron cross sections in all but the lightest nuclei
 - Resolved vs unresolved resonance region

Neutronics

Group-wise treatment of neutron interactions below 20 MeV in FLUKA

The legacy approach

Group-wise approach

- Energy scale is divided into i=1,...,260 fixed bins (groups)
- At each group, cross sections from evaluated nuclear databases (ENDF, JEFF, JENDL...) are averaged over a typical neutron fluence:

- Energy (continuous variable) becomes a group index g (discrete variable)
- Effect: continuous cross sections become histograms

Low-energy neutron groups in FLUKA

- Highest energy group index: 1
- Lowest energy group index: 260

• All energy-resolved quantities involving lowenergy neutrons default to this fixed binning

 This affects USRTRACK, USRBDX, USRYIELD, USRCOLL

Group	Elow (GeV)	Ehigh(GeV)
1	1.9640E-02	2.0000E-02
2	1.9155E-02	1.9640E-02
- 3	1.8683E-02	1.9155E-02
С 4	1 8221F-02	1 8683E-02
5	1 7771E-02	1 8221E-02
6	$1,7232E_02$	1,02210,02 1,77710,02
7	1 40055 02	1,77710-02
/	1.0905E-02	1./333E-02
8	1.648/E-02	1.6905E-02
9	1.6080E-02	1.6487E-02
10	1.5683E-02	1.6080E-02
()		
250	6.2118E-12	9.0994E-12
251	4.2405E-12	6.2118E-12
252	2.8948E-12	4.2405E-12
253	1.9761E-12	2.8948E-12
254	1.3490F-12	1.9761F-12
255	9 2092E-13	1 3490F-12
256	6 2867E-13	0 2002F-13
250	6.2007 = 13	4 0047E 10
257	4.291/E-13	0.2007E-13
258	2.929/E-13	4.291/E-13
259	2.0000E-13	2.9297E-13
260	1.0000E-14	2.0000E-13

#

Group-wise cross sections

Angular distributions

- (n,el) and reaction channels with secondary neutrons are described in terms of an up/down-scattering matrix M_{gg'} providing the likelihood for a neutron to transition from group g to group g':
 - $E_{g'} > E_{g}$: up-scattering (thermal neutrons!)
 - g' = g: in-scattering
 - $E_{g'} < E_{g}$: downscattering
- Several g' may be accessible to a given g
- For a given g→g' transition, the continuous distribution of polar scattering angles is discretised into 3 possible directions (respecting first 6 moments of the original distribution)

Two $g \rightarrow g'$ transitions happened to be accessible here, hence two groups of 3 outgoing directions

Other aspects of FLUKA's group-wise treatment

- Charged secondaries from low-energy neutron interactions are not produced
 - Except for **few selected channels**, among which ¹H(n,el), ¹⁰B(n,a), ¹⁴N(n,p)
 - Their energy is deposited locally via *kerma factors*
- Gamma generation from (n,γ) and (n,n') accounted for (42 groups,1 keV 50 MeV), correlated only for a few isotopes. Photon energy sampled uniformly in group, transport is done in EMF module
- Uncorrelated sampling of residual nucleus from average distribution
- Cross sections available at a few database temperatures (no arbitrary material temperature)
- The group-wise approach is not applicable to event-by-event analyses, detector simulations, applications sensitive to details of a particular cross section resonance, a specific temperature not contained in the database, etc.
- But it has its merits:
 - It is fast and has small memory requirements
 - It is sufficient for some applications, e.g. to score energy deposition in thick materials

Group-wise low-energy neutron interactions in FLUKA

• Group-wise cross sections available for a series of materials:

https://flukafiles.web.cern.ch/manual/chapters/low_energy_neutrons/multigroup_neutron_transport/neutron_cross_section_library/available_cross_sections.html

Material		Temp.	Source	RN	Name	Identifiers		GP	
н	H ₂ O bound natural Hydrogen	296 K	ENDF/B-VIIR0	~	HYDROGEN	1	-2	296	~
Н	CH ₂ bound natural Hydrogen	296 K	ENDF/B-VIIR0	\checkmark	HYDROGEN	1	-3	296	\checkmark
()									
Fe	Natural Iron	296 K	ENDF/B-VIR8	\checkmark	IRON	26	-2	296	~
Fe	Natural Iron	87 K	ENDF/B-VIR8	~	IRON	26	-2	87	\checkmark
Fe	Natural Iron	4 K	ENDF/B-VIR8	~	IRON	26	-2	4	\checkmark
Fe	Natural Iron	430 K	ENDF/B-VIR8	\checkmark	IRON	26	-2	430	~
()									
²⁴¹ Am	Americium 241	296 K	ENDF/B-VIIR0	√	241-AM	95	241	296	~
²⁴¹ Am	Americium 241	87 K	ENDF/B-VIIR0	√	241-AM	95	241	87	1
²⁴³ Am	Americium 243	296 K	ENDF/B-VIIR0	\checkmark	243-AM	95	243	296	~
²⁴³ Am	Americium 243	87 K	ENDF/B-VIIR0	\checkmark	243-AM	95	243	87	√

Table 8 Available low-energy neutron groupwise cross sections

- Processed from ENDF, JENDL, JEFF
- Available at 296 K, and at a few fixed temperatures for selected materials

Using FLUKA's group-wise library

- Every FLUKA material (except VACUUM and BLCKHOLE) must be assigned to a group-wise library material
- If 'FLUKA material name' = 'group-wise library material name', the association is automatic
- Otherwise, the **LOW-MAT** card must be used:

MATERIAL	Name: SODIU_87	#	p: 0.97
Z: 11	Am: 22.99	A:	dE/dx: 🔻
LOW-MAT	Mat: SODIU_87 V	LowMat: 23Na. Sodium 23, 87K 🔻	

 The first match of FLUKA material name to group-wise library material name present in the input is taken into account

Point-wise treatment of neutron interactions below 20 MeV in FLUKA

General treatment introduced in FLUKA v4-3.0

Default from v4-4.0 for DEFAULTs: NEW-DEFA, PRECISION, DAMAGE

See V. Vlachoudis et al., *Recent developments in the point wise neutron treatment for FLUKA v4*, EPJ WoC 284 (2023) 03021 <u>doi.org/10.1051/epjconf/202328403021</u>

Point-wise interactions in FLUKA

- Nearly direct sampling from evaluated nuclear data libraries:
 - **JEFF** (Joint Evaluated Fission and Fusion library):
 - **ENDF** (Evaluated Nuclear Data Files):
 - JENDL (Japanese Evaluated Nuclear Data Library): https://wwwndc.jaea.go.jp/jendl/jendl.html
 - **CENDL** (Chinese Evaluated Nuclear Data Library):
 - **BROND** (Russian evaluated neutron data library):

https://en.cnnc.com.cn/2020-06/17/c_501119.htm

https://vant.ippe.ru/en/brond-3-1

https://www.oecd-nea.org/dbdata/jeff/

https://www-nds.iaea.org/exfor/endf.htm

• FLUKA's point-wise code implementation relies on the G4NDL data:

Evaluated neutron cross section libraries for the GEANT4 code (v2.0, 17/05/2018)

Emilio Mendoza and Daniel Cano-Ott, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain

FLUKA point-wise data libraries

 Due to large size, the neutron data libraries are provided as separate packages to download*, installed in \${FlukaDir}/data/neutron/:

BROND-2.2	ENDF-VII0
BROND-3.1	ENDF-VII.1
CENDL-31	ENDF-VIII0
ENDF-VI8	JEFF30N

JENDL-4.0 JENDL-4.0u JENDL-5.0 TENDL21

- The default point-wise library for FLUKA v4-4.0 is JEFF-3.3
- Older evaluations are also provided for comparison purposes
- Thermal Scattering Law S(α,β,T) for several materials

* <u>https://fluka.cern/download/neutron-data-libraries</u>

- Directory structure:
 - Elastic/
 - CrossSection/
 - FS/
 - Capture/
 - CrossSection/
 - Inelastic/

•

- Fission/
 - ...
- ThermalScattering/
 - Coherent/
 - Incoherent/
 - Inelastic/

Containing one file per isotope, per channel, cross section, and final state

Point-wise interaction libraries used by FLUKA

- Interactions are divided into 4 kinds:
 - Elastic: (n,el)
 - Capture: (n,γ)
 - Inelastic
 - Further subdivided into 36 channels, e.g. (n,n'), (n,p), (n,d), $(n,^{3}He)$, (n,α)
 - Fission: (n,f)
 - Fission fragments from database if present, otherwise Wahl [1] systematics
- All isotopes have (n,el) and (n,γ), as well as inelastic channels (typically open at high energies, with a few exceptions)
- A few isotopes have a fission channel

[1] A. Wahl, Systematics of Fission-Product Yields, LA-13928 May (2002) http://cds.cern.ch/record/747754/files/34035670.pdf

Point-wise interactions in FLUKA: key features

- Nearly direct sampling from evaluated nuclear data libraries
- (E_i, σ_i) tables with accuracy < 0.1%
- Modern C++ implementation
- Heavily optimised:
 - Caching a lot of necessary information (pre-tabulation of cumulative distributions)
 - Using adaptive algorithms to improve performance
 - Improved sampling of secondary distributions (using tight envelopes in case of rejection)
 - An innovative idea: a fast indexing of cross-sections using a cheap CPU log₂ approximation
 - Hierarchical sampling of channels
- Fast Doppler broadening at arbitrary temperature performed at initialisation
- "Fully" correlated emission of reaction products: N-body final states populated by subsequent 2-body emissions (the kinematics gradually constraining database distributions)

Doppler broadening

- Integrated cross sections are Dopplerbroadened to the temperature *T* required using an adaptive numerical integration
- Performed at initialisation
- Fast: CPU time reported in output file (see below)
- Always ensuring precision better than 0.1% (as provided in the initial data)

Online Doppler broadening example at 293 K for ${}^{113}Cd(n,\gamma)$:

- FLUKA
- JEFF (T=0 K)
- JEFF processed with NJOY

Point-wise (n,el) in FLUKA

- Continuous distribution of polar scattering angles
- Above ~5 eV the target nucleus is effectively at rest
- Below ~5 eV the target nucleus motion is sampled from a Maxwell-Boltzmann distribution
- Recoils are explicitly calculated and pushed to the stack
- Below ~eV, neutron wavelength spreads over several atoms. Neutron scattering cross sections are sensitive to the molecular/ crystalline binding of the target nuclide.
 - E.g. H(n,el) will be different depending on whether H is bound in H_2 , H_2O , ZrH, etc.
- To account for binding effects, thermal scattering laws S(α,β,T) are available upon user request for a handful of isotopes / materials (more below)

n fluence for 0.1 eV n on 100 nm Al at the origin

Point-wise (n,γ) in FLUKA

- The neutron is absorbed leading to an excited nucleus
 → standard FLUKA de-excitation module
- All known γ lines will be reproduced
- Currently all isotopes de-excite to the ground state
- Work is ongoing to properly use the probability to end in an isomeric state if the information is available in the database
- The recoil is properly generated

Inelastic interaction channels

- FLUKA selects a sub-channel based on the cross section
- It then samples the secondaries (including the residual nucleus) according to database information on the final state
- It will sample the secondaries (except the photons) one-by-one from the database distributions, getting back the Energy and cosθ of the ejectile, either in LAB or in CMS
- Excited residual nucleus is de-excited with the standard FLUKA modules (see Hadronics lecture)

Fission timeline

- Compound nucleus $n+(Z,A) \rightarrow (Z,A+1)$
- ~10% neutrons emitted pre-scission if kinematically possible
- Scission → Split into two or three fragments (only two in FLUKA)
- Excited fragments emit prompt neutrons proportionally to their neutron excess and gammas from the database distribution
- Fragments are sampled either from the database or from Wahl systematics
- Fragments can further emit delayed neutrons (not implemented!)
- Beta decay of fission fragments via a decay run
- Neutrino emission of fission fragments not implemented

Thermal Scattering Law $S(\alpha,\beta,T)$ (1/2)

- For thermal neutrons, generally with energies less than ~4 eV, scattering cross sections are affected by the chemical/molecular/crystalline binding environment of the active target isotope
- If binding effects are not accounted for in a simulation, the reported results may be highly inaccurate
- Luckily NJOY [1] can preprocess the Thermal Cross section data and prepare 3D tabulations with:
 - [Incoming neutron energy; Outgoing energy; Outgoing angular distribution]
 - [Incoming neutron energy; Bragg Edge; Outgoing angular distribution]

[1] R. E. MacFarlane et al, The NJOY Nuclear Data Processing System, Version 2016, DOI:https://doi.org/10.2172/1338791

Thermal Scattering Law S(α,β,T) (2/2)

- Channels (nomenclature refers to state in which target system is left):
 - Elastic the neutron energy remains the same, the angle changes
 - **Coherent** discrete angles depending on the crystal direction vs neutron direction and Bragg edge selected, on crystal lattice
 - Incoherent continuous distribution of angles mostly on hydrogenous materials
 - Inelastic the scattering system is left in an excited state
- 58 materials available
 - al_metal, be_beo, be_metal, benzen, d_heavy_water, d_ortho_d2, d_para_d2, fe_metal, graphite, h_l_ch4, h_ortho_h2, h_para_h2, h_polyethylene, h_s_ch4, h_water, h_zrh, o_beo, o_uo2, u_uo2, zr_zrh, ...
- In addition, any $S(\alpha,\beta,T)$ ACE library with point-wise data can be used
- At various fixed temperatures per material: 4 .. 800 K
- Must be requested explicitly on a per-isotope basis (see LOW-PWXS card below)
- Exception: H is always assumed bound to H₂O

Example $S(\alpha,\beta,T)$ on ZrH

ZrH Neutron Fluence

Binding effects of n scattering in graphite

• First Bragg edge of graphite: 1.82 meV

https://www-nds.iaea.org/publications/indc/indc-nds-0475.pdf

https://fluka-forum.web.cern.ch/t/4528/7

Usage: LOW-PWXS card

- LOW-PWXS card controls the new point-wise treatment in FLUKA
- WHAT(1):
 - **empty/0** = use PW treatment for this isotope (default)
 - >0 Isotope code Z*10000 + A*10 + iso
 - -1 = switch to OLD behavior, use GW/Old PW treatment for this isotope
- WHAT(2):
 - $S(\alpha,\beta,T)$ tabulation to associate with this isotope (list of isotopes in various binding environments)
- WHAT(3):
 - **Temperature in K** to Doppler broaden XS (default 296 K)
- WHAT(4,5,6):
 - FLUKA material range
- SDUM:
 - Select database to be used. Empty = default (For the present v4-4 default = JEFF-3.3)

LOW-PWXS: examples

• Without any argument: enable PW treatment for all (available) isotopes

🖉 LOW-PWXS	Mat: 🔻	to Mat: 🔻	Step:	
db: ▼	IAZ:	S(α,β): ▼	T:	

• With WHAT(1) = -1 to use GW supplemented by PW for a handful of channels

LOW-PWXS	Mat: 🔻	to Mat: 🔻	Step:
db: v	IAZ: -1	S(α,β): ▼	T;

• Example:

 Enable PW for HYDROGEN (natural 1H + 2H) Load from ENDF database Doppler broaden to 350 K Select the h_water S(α,β,T) ONLY for 1H

LOW-PWXS	Mat: HYDROGEN 🔻	to Mat: 🔻	Step:	
db: endf ▼	IAZ: 10010	S(α,β): h_water ▼	T: 35 <mark>0</mark>	

Scoring: USR{BDX, TRACK, YIELD, COLL}

Group-wise:

• When scoring of low-energy neutrons is requested, FLUKA will use the FIXED energy group structure of 260 groups, independently of what is supplied in the card

Point-wise:

- FLUKA will honor the user histogram settings: ONLY IF the materials of the regions involved have ALL constituents declared as point-wise
- Special attention to VACUUM which can be operationally declared as point or group-wise with the LOW-PWXS card
- E.g. USRBDX on a boundary between a point-wise material and VACUUM declared as group-wise, will still show group binning (!)

FLUKA output

- Search for the section: Low energy neutron Point Wise materials
- For each FLUKA material that contains PW isotopes the natural composition, temperature, abundance, dataset used, and time for the Doppler broadening is printed
- When something goes wrong verify that what was asked was what you got

*** Low energy neutron <pre>Point Wise</pre> materials								
###	Material	Ζ	Α	m		Τ(K) [Dataset
3	HYDROGEN	1	1	0		296	.0 (default
	S(a,b)	1	1	0			ł	n water
6	CARBON	6	0	0		296	.0 (default
			12	0	(0.9	893	
			13	0	(0.0	107	
7	NITROGEN	7	0	0		296	.0 (default
			14	0	(0.9	963	
			15	0	(0.0	037	
8	OXYGEN	8	0	0		296	.0 (default
			16	0	(0.9	976	
			18	0	(0.0	020	
			17	0		0.0	004	
Dopple	r broadening	Z=	1	A=	1	to	T=296k	(time=0.018041s
Dopple	r broadening	Z=	6	A=	12	to	T=296k	<pre>time=0.002211s</pre>
Dopple	r broadening	Z=	6	A=	13	to	T=296k	(time=0.002787s
Dopple	r broadening	Z=	7	A=	14	to	T=296k	(time=0.00405s
Dopple	r broadening	Z=	7	A=	15	to	T=296k	(time=0.001994s
Dopple	r broadening	Z=	8	A=	16	to	T=296k	time=0.002313s
Dopple	r broadening	Z=	8	A=	18	to	T=296k	time=0.002716s
Dopple	r broadening	Z=	8	A=	17	to	T=296k	time=0.003154s
Dopple	r broadening	Z=	12	A=	24	to	T=296K	time=0.006679s
Dopple	r broadening	Z=	12	A=	26	to	T=296K	<pre>time=0.005807s</pre>
Dopple	r broadening	<u> </u>	12	A=	25	to	1=296K	time=0.008832s
Dopple	r broadening	<u> </u>	13	A=	27	to	1=296K	time=0.01142/s
Dopple	r broadening	<u>_</u> =	26	A=	56	to	1=296K	time=0.080996s
Dopple	r broadening	<u> </u>	26	A=	54	το	T=296K	time=0.03/268s
Dopple	r broadening	<u>_</u> =	26	A=	57	το	T=296K	time=0.066/6/s
Dopple	r proadenind	_∠=	26	A=	28	το	1=2966	. TIME=0.149089S

Lethargy units

An important reminder from the scoring lecture

• Consider the (unnormalised) distribution $\frac{df}{dx} = x e^{-x}$, where x is dimensionless:

• We now shade in 50% of the area under the curve:

- Suppose you want to legitimally resolve what happens at small x in more detail
- So you naturally plot the horizontal axis in logarithmic scale, don't you?

Neutronics

- Suppose you want to legitimally resolve what happens at small x in more detail
- So you naturally plot the horizontal axis in logarithmic scale:

With this careless action you are severely distorting information!

The shaded area appears almost irrelevant in front of the unshaded region, while in reality both regions represent 50% of the distribution (!!!)

Neutronics

Lethargy units

- What happened? You forgot a Jacobian: $\frac{df}{d \log(x)} = \frac{df}{dx} \frac{dx}{d \log(x)} = x \frac{df}{dx}$
- Embrace *lethargy** *units*, the proper representation of

* neutronics term (neutron lethargy)

lethargy: slowness, sluggishness, from Greek lēthargīa (ληθαργία)

In this representation, integrals are respected

You are now representing information in a faithful way

(NB: taking a logarithmic scale in the vertical axis is harmless)

Flair helps you out (but you are responsible for axis labels)

- Do you need to worry? Yes. Be fully conscious when you plot histograms and distributions with logarithmic abscissas (horizontal axes) – needed for low energy n
 - $\frac{df}{d\log(E)} = E \frac{df}{dE}$ \rightarrow Indeed, the resulting spectrum does not have units of "1/GeV" Plot Title: 1 MeV n beam in 50 cm graphite Display: 0 Axes Label Min Max Loa Regardless of ✓ 1e-5 x: Neutron energy [eV] - 1e6 \checkmark whether you y: Neutron fluence [1/cm^2/primary] Detectors request lin or log Detector Info S(a,b,T)Det: 1 NeuCurr (integrated over colid ang V File: scatter/bind 31 tab.lis unbound spacing in your Show Plot Type: histogram ▼ X, 1/e) graph scoring cards ✓ legend Value: <X>*Y ▼ Y Options Dash type: 0 ▼ Lhe width: 3 Color: ▼ Point size: 1 Point type: dot Axes:
- What about histograms? Which X is taken? X_i ? X_{i+1} ?

$$\log X = \frac{1}{2} \left(\log X_{i+1} + \log X_i \right) = \frac{1}{2} \log(X_{i+1} X_i) \qquad \Rightarrow \qquad X = \left[e^{\log(X_{i+1} X_i)} \right]^{1/2} = \sqrt{X_{i+1} X_i}$$

Summary

- Low energy neutrons ≤20MeV receive special treatment in FLUKA
- Two methods are available:
 - Group-wise: coarse, but fast treatment. Few isotopes/channels are in point-wise.
 - Point-wise: superior model, highly optimised, giving access to all latest available neutron data, explicit treatment of interactions in fully correlated way
- What to use:
 - Prefer the use of point-wise
 - **unless**: Speed is an issue and you are not interested in the detailed neutron treatment Warning: Neutrons can be indirectly responsible for many effects (activation, damage, SEU)
 - When unsure, use point-wise to properly take all physical effects into account
 - Group-wise can work nicely for shielding applications
 - Optionally you can mix point- and group-wise treatment in the same problem

