

### **Hadronic & photonuclear interactions**

Hadron-nucleus, nucleus-nucleus and photon-nucleus reactions

Relevant cards: **PHYSICS**, **PHOTONUC** 

Beginner Course – CERN, December 2024

### **Hadronic interactions [I]**

Hadron-nucleus reactions







### How often do hadron-nucleus inelastic interactions occur?

| <ul> <li>Mean free path to next (nuclear)</li> </ul>                            | Material<br>Number&Name | Atomic<br>Number | Atomic<br>Weight | Density    | Inelastic<br>Scattering<br>Length for<br>PROTON at |
|---------------------------------------------------------------------------------|-------------------------|------------------|------------------|------------|----------------------------------------------------|
| inelastic interaction:                                                          |                         |                  |                  |            | Beam energy                                        |
|                                                                                 |                         |                  |                  |            | 0,                                                 |
| $\lambda  ho = \frac{A}{\sigma_R N_A} \qquad \sigma_R \simeq \pi r_0^2 A^{2/3}$ |                         |                  |                  | g/cm**3    | cm                                                 |
|                                                                                 | 1 BLCKHOLE              | 0.000            | 0.000            | 0.000      | 0.1000E+31                                         |
|                                                                                 | 2 VACUUM                | 0.000            | 0.000            | 0.000      | 0.1000E+31                                         |
| This information is printed in the                                              | 3 HYDROGEN              | 1.000            | 1.008            | 0.8370E-04 | 0.6059E+06                                         |
| <ul> <li>I his information is printed in the</li> </ul>                         | 4 HELIUM                | 2.000            | 4.003            | 0.1660E-03 | 0.3590E+06                                         |
|                                                                                 | 5 BERYLLIU              | 4.000            | 9.012            | 1.848      | 40.64                                              |
| output file for the beam particle at the                                        | 6 CARBON                | 6.000            | 12.01            | 2.000      | 40.77                                              |
|                                                                                 | 7 NITROGEN              | 7.000            | 14.01            | 0.1170E-02 | 0.7278E+05                                         |
| beam energy                                                                     | 8 OXYGEN                | 8.000            | 16.00            | 0.1330E-02 | 0.6643E+05                                         |
| 0,                                                                              | 9 MAGNESIU              | 12.00            | 24.30            | 1.740      | 57.10                                              |
|                                                                                 | 10 ALUMINUM             | 13.00            | 26.98            | 2.699      | 37.90                                              |
|                                                                                 | 11 IRON                 | 26.00            | 55.84            | /.8/4      | 15.97                                              |
|                                                                                 | 12 COPPER               | 29.00            | 63.55            | 8.960      | 14.58                                              |
| • E a for $450 \text{ GeV}$ n                                                   | 13 SILVER               | 4/.00            | 107.9            | 10.50      | 14.46                                              |
|                                                                                 | 14 SILICON              | 14.00            | 28.09            | 2.329      | 44.42                                              |
|                                                                                 | 15 GULD                 | 79.00            | 197.0            | 19.32      | 9.328                                              |
|                                                                                 | 10 MERCURY              | 80.00            | 200.0            | 13.55      | 13.37                                              |
|                                                                                 | 17 LEAD                 | 82.00            | 20/.2            | 11.35      | 10.11                                              |
| True is a loss a sur fue a sur a the target surt                                | 10 CODTUM               | 11 00            | 190.9            |            | 10.50                                              |
| • Typical mean free path to next                                                |                         | 19 00            | 22.99            | 0.9710     | 100.7                                              |
|                                                                                 | 20 AROON                | 10.00            | 39.95<br>// / 0  | 1 550      | 0.0000E+05                                         |
| nuclear reaction in dense media:                                                | 21 CALCIUM<br>22 TIN    | 50.00            | 40.00            | 7 310      | 73.03<br>21.34                                     |
| O(40) area                                                                      | 22 TUNGSTEN             | 74 00            | 183 8            | 10 30      | 0 156                                              |
| O(10) cm                                                                        | 24 TTTANTIM             | 22.00            | 47 87            | 4.540      | 26.51                                              |
|                                                                                 | 25 NICKEL               | 28.00            | 58.69            | 8.902      | 14.33                                              |



### "GeV missing" at the end of the output file (don't panic!)

- Hadron with kinetic energy *T<sub>a</sub>* impinging on a nucleus *b* at rest, producing *N* secondaries: *a* + *b* → 1 + 2 + 3 + ...
- Total energy (kinetic energy plus rest mass) is conserved:
- Reaction Q value (typically in the order of MeV):
- **Q<0** (*Endoenergetic*): secondaries collectively have less kinetic energy than incoming hadron.

Incoming kinetic energy partially spent in mass of secondaries\*.

Missing (kinetic) energy in the output file is **positive**.

 Q>0 (Exoenergetic): secondaries collectively have more kinetic energy than incoming hadron.

Mass converted to kinetic energy.

Missing (kinetic) energy in the output file is **negative**.

\*overcoming nucleon separation energies, providing mass to generate new secondaries (pions, kaons, ...), etc.

$$T_a + m_a + m_b = \sum_{j=1}^N T_j + \sum_{j=1}^N m_j.$$

$$Q = \sum_{j=1}^{N} T_j - T_a = (m_a + m_b) - \sum_{j=1}^{N} m_j$$

In the output table, the average *Q* value per primary (histories may involve more than one nuclear inelastic interaction...)

| 4.5000E+02     | (100.%) | GeV available per bea | am particle divided into                |
|----------------|---------|-----------------------|-----------------------------------------|
| Prompt radiati | lon     | Radioactive decays    |                                         |
| 4.6364E+01     | (10.3%) | 7.0255E-03 ( 0.0%)    | GeV hadron and muon dE/dx               |
| 2.1011E+02     | (46.7%) | 1.5204E-01 ( 0.0%)    | GeV electro-magnetic showers            |
| 1.3057E+00     | (0.3%)  | 1.8288E-05 ( 0.0%)    | GeV nuclear recoils and heavy fragments |
| 0.0000E+00     | ( 0.0%) | 0.0000E+00 ( 0.0%)    | GeV particles below threshold           |
| 0.0000E+00     | ( 0.0%) | 0.0000E+00 ( 0.0%)    | GeV residual excitation energy          |
| 0.0000E+00     | ( 0.0%) | 0.0000E+00 ( 0.0%)    | GeV low energy neutrons                 |
| 1.3611E+02     | (30.2%) | 5.0772E-02 ( 0.0%)    | GeV particles escaping the system       |
| 4.3389E+01     | (9.6%)  | 7.4494E-02 ( 0.0%)    | GeV particles discarded                 |
| 0.0000E+00     | (0.0%)  | 0.0000E+00 ( 0.0%)    | GeV particles out of time limit         |
| 1.2432E+01     | (2.8%)  |                       | GeV missing                             |



# The microscopic view [II]

- Nuclear inelastic interactions generate plenty of secondaries
- Nearly geometrical increase in the number of particles in the shower
- Shower develops until hadron energy drops below pion production threshold
- Hadronic showers couple to EM showers  $(\pi^0 \rightarrow 2\gamma)$
- EM showers couple to hadronic showers (photonuclear reactions), but at a much lower rate
- EM shower extent: radiation length (see below)

Simulated shower for a single 450 GeV proton in aluminum

Ref: A. Lechner, https://indico.cern.ch/event/817601/







100

50

-50

-100

# The microscopic view [III]

- After 20 ms, the picture is nearly filled by n
- As seen in the neutronics lecture, neutrons perform (n,el) until they are lost to (n,g), (n,f), or some inelastic channel
- They have to be followed down to thermal energies, as it is typically where (n,g) cross sections are largest – and for some isotopes there are inelastic channels as well, e.g. <sup>10</sup>B(n,a).

Simulated shower for a single 450 GeV proton in aluminum



Ref: A. Lechner, https://indico.cern.ch/event/817601/



# The microscopic view [IV]

Residual nuclei produced by a single 26 GeV proton on <sup>nat</sup>Cu



#### THE MACROSCOPIC VIEW: ACTIVATION



Prompt run: stops with the generation of the residual nuclei Decay run (much longer time scales): see the activation lecture+exercise on Fri!

### **FLUKA**

#### Hadronic interactions

# Radiation shower development in different materials

|    | ρ[g/cm3] | Z  | Х <sub>0</sub> [ст] | λ [cm]<br>for 7 TeV p |
|----|----------|----|---------------------|-----------------------|
| Ве | 1.85     | 4  | 35.28               | 37.06                 |
| CC | 1.77     | 6  | 24.12               | 42.09                 |
| AI | 2.70     | 13 | 8.90                | 35.35                 |
| Ti | 4.54     | 22 | 3.56                | 25.04                 |
| Fe | 7.9      | 26 | 1.76                | 15.1                  |
| Cu | 8.96     | 29 | 1.44                | 13.86                 |
| W  | 19.3     | 74 | 0.35                | 8.90                  |

energy deposition transversally integrated [different from *peak density* profile, which depends on beam size]

for a 7 TeV proton impacting on a 92 cm long jaw



- For light materials ( $X_0$  and  $\lambda$  are large): just the onset of the shower
- For dense materials: shower fully develops and peak is reached early on

 W would appear to be a great material for a collimator, but the material cannot sustain such a load.



### **Two kinds of nuclear interactions**

### • Elastic:

- Neither the target nor the projectile are excited
- No new particles are produced
- Projectile and target exchange kinetic energy
- Their directions change accordingly to conserve 4-momentum
- There is no threshold kinetic energy for this interaction mechanism.
- NB: available in FLUKA for  $\pi$ , K, ..., n, p but not for d and heavier ions (possibly less relevant)
- See <a href="https://arxiv.org/abs/2312.12300">https://arxiv.org/abs/2312.12300</a> for nuclear elastic scattering of protons below 250 MeV

### Non-elastic / inelastic / reactions:

- Target and/or projectile may be excited
- New particles may be produced
- There is a threshold kinetic energy (except for neutron capture)



### Non-elastic hadron-nucleon reactions [I]

- To understand hadron-Nucleus (hA) nuclear reactions, one must understand first hadron-Nucleon (hN) reactions, since nuclei are made up by protons and neutrons.
- Cross sections for the scattering of n and p projectiles on target nucleons:
- Above ~ GeV/c, most of the hN cross section goes into inelastic processes
- Below particle production threshold:
  - Cascade of elastic hN collisions inside the nucleus
  - Knock-on nucleons may be emitted individually or as light fragments (d, t, 3He, 4He, etc)
  - Since particles in the final state are different than those in the original state, the process (nuclear reaction) is indeed inelastic



Ref: Mokhov N.V. and Cerutti F., CERN-2016-002 83-110 and references therein



### **Non-elastic hadron-nucleon reactions [II]**

- At Intermediate Energies, all reactions proceed through an intermediate state containing at least one resonance (dominance of the  $\Delta(1232)$ resonance and of the N\* resonances) which decays into other particles.
- N1 + N2  $\rightarrow$  N1' + N2' +  $\pi$ (threshold around 290 MeV, important above 700 MeV)
- $\pi + N \rightarrow \pi' + \pi'' + N'$ (opens at 170 MeV)



Ref: Mokhov N.V. and Cerutti F., CERN-2016-002 83-11 and references therein



### **Non-elastic hadron-nucleon reactions [III]**

- Resonance model breaks down at high energies.
- Dual Parton Model based descriptions are applicable: colliding hadron+nucleon described in terms of quarks
- Quarks held together by the gluon-gluon interaction into the form of a string.
- Strings eventually lead to physical hadrons (see next slides)





(qm)

ь

### **Hadron nucleus reaction**

- At high energies, incoming hadron interacts with all nucleons at the same time (multiple primary collision picture of Glauber – field theory expansion by Gribov)
- Quark interaction generates chains
- Valence as well as sea quarks participate (!)





Ref: Mokhov N.V. and Cerutti F., CERN-2016-002 83-110 and refs therein



### **Hadron nucleus reaction**

- Strings generate quark/antiquark combinations
- Hadronization into physical baryons and mesons
- It takes some time for the hadron to materialize. Heisenberg uncertainty principle implies there is a formation zone (length) for hadrons to materialize (before they can reinteract).
- In absence of a formation zone, secondary particle yield would be overestimated



#### iii. formation zone

Condition for possible re-interaction inside a nucleus:

$$\Delta x_{for} \le R_A \approx r_0 A^{\frac{1}{3}}$$

reflecting the materialization time



### **Nuclear reactions in FLUKA**

i. To decide the process occurrence

Reaction cross section (typically parametrized)







### **Pre-equilibrium and evaporation**

- After the cascade stage, the nucleus remains excited.
- Excitation energy not equally shared among nucleons. Semiclassical exciton model:
  - Excitation energy sharing among nucleons and holes
- Last reaction stages: evaporation (Weisskopf-Ewing model) or fission (Myers and Swiatecki model), or fragmentation (Fermi break-up for A<18), and γ de-excitation.</li>





### Coalescence

High energy light fragments can be produced by a mechanism joining together nucleons that are near in the phase space.



To be activated when light fragment spectra or residual nuclei are of interest:

| * PHYSICS               | Type: COALESCE V Activate: On V |
|-------------------------|---------------------------------|
| *+1+2+                  | 3+4+5+6+7. <b>v</b> +           |
| PHYSICS <mark>1.</mark> | COALESCE                        |

**N.B.** Remove the card previously required to invoke low energy *deuteron splitting at interaction:* 



A dedicated **deuteron interaction** model is now available since FLUKA-4.2.0 and invoked by default (unless splitting is requested) !



### A benchmark glimpse



Points: exp. data (C. Alt et al., EPJC49 (2007) 897 and T. Anticic et al. (NA49) EPJC68 (2010) 1) Histogram: FLUKA

**FLUKA** 

Points: exp. data (Agababyan et al., ZPC50 (1991) 361) Histogram: FLUKA

**Hadronic interactions** 

### **Production of residual nuclei**

- Besides the emission of secondary particles (nucleons and other hadrons), a nuclear reaction generally leads to the production of a residual nucleus
- Lecture on Fri: we see what happens when the residual nucleus is unstable
- Whenever residual nuclei inventories are of interest (e.g., activation calculations), one should pass a PHYSICS card with the evaporation of heavy fragments (up to A=24)



Inclusive fragment production Points: exp. data (T. Enqvist, Nucl. Phys. A 686 (2001) 481)

Simulation: Mokhov N.V. and Cerutti F., CERN-2016-002 83-110 and references therein



### **Hadronic interactions [II]**

Nucleus-nucleus (A-A) reactions



### **Different energy ranges and event generators**

A-A nuclear reaction treatment in FLUKA:

- above 5 GeV/n: DPMJET-III
  - independent code by R. Engel, J. Ranft and S. Roesler,
  - interfaced with FLUKA by A. Empl et al., nowadays developed and distributed by A. Fedynitch
  - to be linked by *ldpmqmd*
  - \* overlap with RQMD-2.4 from 4.5 to 5.5 GeV/n
  - required also for h-h and h-A reactions above 20 TeV (overlap with PEANUT from 10 to 30 TeV)
- between 125<sup>+</sup> MeV/n and 5<sup>+</sup> GeV/n: RQMD-2.4
  - original code by H. Sorge et al., interfaced with FLUKA by A. Ferrari et al., no longer actively developed
  - to be linked by *ldpmqmd*
  - <sup>†</sup> overlap with BME from 0.1 to 0.15 GeV/n and with DPMJET-III from 4.5 to 5.5 GeV/n
- below 125<sup>§</sup> MeV/n by BME:
  - original code by E. Gadioli et al., interfaced with FLUKA by F. Cerutti et al.
  - already linked as part of the FLUKA library
  - § overlap with RQMD-2.4 from 0.1 to 0.15 GeV/n
  - deuterons are not covered, but treated independently (dedicated interaction model as of FLUKA v4-2.0)



#### Hadronic interactions

### Sharing the same FLUKA de-excitation modules

- The projectile- and target-like excited nuclei produced by DPMJET-III go through the final evaporation stage (see slide 18)
- The projectile- and target-like excited nuclei reconstructed from the rQMD-2.4 final state go first through the pre-equilibrium stage (see slide 16)
- The excited nuclei generated by BME, as their pre-equilibrium de-excitation cannot be directly performed by BME since they fall outside the BME database domain, also go through the PEANUT pre-equilibrium stage

The BME interface with the PEANUT pre-equilibrium yielded a particular improvement for the excitation functions of <u>heavy residuals</u> produced by low energy alphas  $\sigma$  [k





### **Photonuclear interactions**

Photon-nucleus reactions



### **Photonuclear reactions**

- $\gamma Pb$
- Photons above a few MeV can be absorbed and initiate a nuclear reaction. Relevant e.g. for activation in e-/e+ machines: Bremsstrahlung can produce energetic photons!
- To activate it:

| <b>PHOTONUC</b> | Type: 🔻            |                | All E: On 🔻         |
|-----------------|--------------------|----------------|---------------------|
| E>0.7GeV: off ▼ | ∆ resonance: off ▼ | Quasi D: off 🔻 | Giant Dipole: off 🔻 |
|                 | Mat: COPPER 🔻      | to Mat: 🔻      | Step:               |
| *+1+            | .2+3+4             | .+5+6          | +7. 🔻 +             |
| PHOTONUC        | 1                  | COPPER         |                     |

- The reaction cross section features four energy ranges:
  - Giant Dipole Resonance (6-60 MeV, stored in a special database)
  - Quasi-deuteron
  - Delta resonance
  - Vector Meson Dominance (high energy > 0.7 GeV)
- The reaction outcome is calculated through the IntraNuclear Cascade, pre-equilibrium and evaporation stages
- Photonuclear reactions need to be biased by the LAM-BIAS card (see the Biasing lecture slides)



cross section for multiple neutron emission data: NPA367, 237 (1981) and NPA390, 221 (1982)



### μ-Α, e<sup>-</sup>-Α, e<sup>+</sup>-Α

Virtual-photon-mediated reactions are also implemented:

- muon photonuclear interactions (normally on by default, no need for the MUPHOTON card)
- electronuclear interactions, to be activated:

| <b>PHOTC NUC</b> | Typ. ELECTNU       | C▼             | All 🗄 On 🔻          |
|------------------|--------------------|----------------|---------------------|
| E>0.7GeV: off ▼  | ∆ resonance: off ▼ | Quasi D: off 🔻 | Giant Dipole: off 🔻 |
|                  | Mat: LEAD 🔻        | to Mat: 🔻      | Step:               |
| *+1+             | .2+3+4.            | +5+            | .6+7+               |
| PHOTONUC         | 1                  | LEAD           | ELECTNUC            |

- For *electron/positron beams*, they play a role in case of thin target. Instead, for material thicknesses exceeding the radiation length, reactions by real bremsstrahlung photons dominate.
- The card above activates automatically real photon reactions too (*no need for an additional card* as in the previous slide)





### **Electromagnetic dissociation (EMD) of ions**

• Relevant for high-energy ion beams, e.g. in Pb-Pb collisions at the LHC





### **Summary**

- Generalities of hadronic showers in matter
- Hadron-nucleon cross section
- FLUKA's hadron nuclear inelastic interaction model from low to high energies:
  - (Generalized) Intranuclear cascade stage → pre-equilibrium
     → evaporation/fission/Fermi break-up → gamma de-excitation
  - Inelastic scattering length in the output file
- FLUKA's nucleus-nucleus inelastic interaction models (BME, rQMD, DPMJET)
- Whenever residual nuclei production is of interest:

| 🛞 PHYSICS  | Type: COALESCE ▼ Activate: On ▼ | * PHYSICS | Type: EVAPORAT<br>Zmax: 0 | <ul> <li>Model: New Evap with heavy frag &lt;<br/>Amax: 0</li> </ul> |
|------------|---------------------------------|-----------|---------------------------|----------------------------------------------------------------------|
| *+1+2+     | 3+4+5+6+7. ▼ +                  | *+1+2.    | +                         | +5+6+7. ▼ +                                                          |
| PHYSICS 1. | COALESCE                        | PHYSICS 3 |                           | EVAPORAT                                                             |

- Photonuclear and electronuclear interactions (**PHOTONUC** card)
- Muon photonuclear interactions (on by default)
- Electromagnetic dissociation of ions (**PHYSICS** card)





### **Pion absorption**

#### PION – Ni



in the  $\Delta$  resonance region

