

Advanced geometry

Transformations and modular geometries

Beginner course – CERN, December 2024

Basic geometry concepts

Three concepts are fundamental in the FLUKA Combinatorial Geometry, which have been described earlier in the course:

- **Bodies**: basic convex objects + infinite planes & cylinders + generic quadric
- **Zones**: portion of space defined by intersections (+) and subtractions (-) of bodies (used internally)
- **Regions**: union of multiple zones () (or a single zone)

Complex and modular geometries

3D rendering of LHC IR7

Complex and modular geometry models like the one shown here are built with LineBuilder [A. Mereghetti et al., IPAC2012, WEPPD071, 2687]

Such a geometry model heavily depends on **LATTICES** (i.e. duplication of existing regions) which are not covered here

In this lecture

- Roto-translation transformations
 - ROT-DEFIni card
- Geometry directives
 - translat
 - transform
 - expansion
- Additional card related to a transformation
 - ROTPRBIN card
- Tips for building a modular geometry

The ROT-DEFI card

ROT-DEFI card – Introduction

☆ ROT-DEFI	Axis: Z ▼	Id: 0	Name:	
	Polar:	Azm:		
	Δx:	Δy:	Δz:	

The **ROT-DEFI** card defines roto-translations that can be applied to:

• Bodies:

To move and rotate geometry

• USRBIN and EVENTBIN cards (see ROTPRBIN card later)

To move and rotate scorings

• **LATTICE** (not covered here)

The **ROT-DEFI** card <u>must be outside the geometry description</u>, e.g. after **GEOEND** The roto-translation places the body (or USRBIN etc) in the **lab** frame of reference.

ROT-DEFI card – Definition

☆ ROT-DEFI	Axis: Z ▼	ld: 0	Name:	
	Polar:	Azm:		
	Δx:	Δy:	Δz:	
Axis:	reference axis			
ld:	transformation index. If set to	0, then Id is autor	natically assigned	
Name:	transformation name. Optiona	al, but recommend	ed for easy referencing	
Polar:	polar angle of the rotation R _n	ן (0 ≤ ୬ ≤ 180 deg	rees) [clockwise]	
Azm:	azimuthal angle of the rotation	on \mathbf{R}_{azm} (-180 $\leq \phi \leq$	180 degrees) [clockwise]	
Δx, Δy, Δz:	vector components for the tra	anslation T		
F	R _{pol} (9)	_	R _{azm} (φ)	
	When reference axis is Z:		When refere	ence axis is Z:
	Clockwise rotation around	Υ	Clockwise r	otation around Z
	with angle 9		with angle q)
	* More generally, with ref. a	xis X _o :	* More gener	allv. with ref. axis X _c
	Y Clockwise rotation around	X ₂	Y Clockwise r	otation around X_0
	with angle ϑ		with angle q)
	"X ₁ goes towards X ₀ "		"X ₂ goes to	wards X ₁ "

* Let (X0, X1, X2) be a right-handed orthogonal system in a 3D space. For example: (Z, X, Y), or (X, Y, Z), or (Y, Z, X).

XĽ

ROT-DEFI card – Definition

☆ ROT-DEFI	Axis: Z 🔻	Id: 0	Name:
	Polar: 9 value	Azm: φ value	
	∆x: X _{offset} value	∆y:Y _{offset} value	∆z: Z _{offset} value

The ROT-DEFI card roto-translation is defined as:

 $\begin{array}{c} \textbf{R}_{\textbf{pol}}(\vartheta) \circ \textbf{R}_{\textbf{azm}}(\phi) \circ \textbf{T} \\ \textbf{3.} & \textbf{2.} & \textbf{1.} \end{array} \begin{array}{c} \text{Composition order matters!} \\ \text{First T, then } \textbf{R}_{\textbf{azm}}, \text{ then } \textbf{R}_{\textbf{pol}} \end{array}$

For example, for a ROT-DEFI card with **Axis = Z**, the roto-translation is:

$egin{array}{l} X_{ m new} \ Y_{ m new} \ Z_{ m new} \end{array}$	=	$\begin{array}{c} \cos heta \\ 0 \\ \sin heta \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$-\sin heta$ 0 $\cos heta$	$\cos\phi \ -\sin\phi \ 0$	$\sin\phi\ \cos\phi\ 0$	$egin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{aligned} X_{\text{old}} + X_{\text{offset}} \\ Y_{\text{old}} + Y_{\text{offset}} \\ Z_{\text{old}} + Z_{\text{offset}} \end{aligned}$	See ROT-DEFI in manual!
		rotation around Y axis with clockwise angle ૭		rotation around Z axis with clockwise angle ϕ		is φ			

It is preferable to define rotations through the azimuthal angle.

ROT-DEFI cards – "Chaining" / Inverse

- It is possible to use multiple ROT-DEFI cards to define a single transformation (compositon, or "chaining"):
 - The Name (or Id) on the "chained" **ROT-DEFI** cards has to be the same.
 - The transformations associated with the **ROT-DEFI** cards are applied from top to bottom.

1.	✿ ROT-DEFI	Axis: Y ▼ Polar:	Id: 0 Azm: 30	Name: Rot	
2.	✿ ROT-DEFI	∆x: Axis: Y ▼	∆y: Id: 0	Δz: -30 Name: Rot	
		Polar: Δx:	Azm: Δy:	Δz: 30	

 It is also possible to access the inverse of the transformation associated with a ROT-DEFI card.

- Just refer to the existing **ROT-DEFI** card with a minus sign ("-") before its name or Id number.
- Example use with **ROTPRBIN** card later in the lecture.

Body located away from the origin of the coordinate system.

Body located away from the origin of the coordinate system.

Geometry directives

Geometry directives

• Special commands enclosing a body (or a list of bodies) definition:

\$start_xxx
...
\$end_xxx

- Where "xxx" stands for "translat", "transform" or "expansion"
- The directive is applied to the list of the bodies embedded between the starting and the ending directive lines

Directives in geometry: expansion

```
$start_expansion
...
$end_expansion
```

provides an expansion (or reduction) of all body components (dimensions and placement) by a defined scaling factor (f), for all bodies included in the directive

\$start_expansion f: 2			
TRC target x: 0.0	y: -10.0	z: -2.0	
Hx: 0.0	Hy: 0.0	Hz: 4.0	
Rbase: 3.0	Rappex: 2.0		
\$end_expansion			

Directives in geometry: translation

```
$start_translat
...
$end_translat
```

provides a coordinate translation (dx, dy, dz) for all bodies embedded within the directive

\$start_translat	dx: 0.0	dy: -10.0	dz: 5.0	
TRC target	x: 0.0	y: 0.0	z: -2.0	
	Hx: 0.0	Hy: 0.0	Hz: 4.0	
	Rbase: 3.0	Rappex: 2.0		
\$end_translat				

Directives in geometry: transform

```
$start_transform
...
$end transform
```

applies a roto-translation (pre-defined via **ROT-DEFI**) to all bodies embedded within the directive

\$start_transf	orm Trans: Rot 🔻		
A TRC targe	t x: 0.0	y: 0.0	z: -2.0
	Hx: 0.0	Hy: 0.0	Hz: 4.0
	Rbase: 3.0	Rappex: 2.0	
\$end_transfo	rm		
☆ ROT-DEFI	Axis: X 🔻	Id: 0	Name: Rot
	Polar:	Azm: -45	
	Δx:	Δy:	∆z: 10

Directives in geometry: warnings

 \$start_expansion and \$start_translat are applied at intialisation → no CPU penalty

```
$start_transform is applied runtime \rightarrow some CPU penalty
```

 One can nest the different directives (at most one per type) but, no matter the input order, the adopted sequence is always the following:

```
$start_transform
	$start_translat
	$start_expansion
	...
	$end_expansion
	$end_translat
$end_transform
```


The ROTPRBIN card

The ROTPRBIN card

- Consider the following problem:
 - Pencil beam impinging on a cylindrical target
 - Using the R-Φ-Z USRBIN scoring, for symmetry
 - The beam and the target are rotated by 30 degrees around the y axis
- Solution: **ROTPRBIN** card
 - Allows to apply a roto-translation transformation (**ROT-DEFIni** cards) to **USRBIN** or **EVENTBIN** scorings
 - Important: In the ROTPRBIN card, the transformation which is specified is NOT the usual placement of the mesh in the lab frame of reference (i.e., the transformation: lab frame of reference → mesh frame of reference), but its <u>inverse</u>.

The ROTPRBIN card

• Example: **Both** the "target" solid and the "Fluence" mesh are rotated with "Rot":

✿ ROT-DEFI	Axis: Y ▼ Polar:	ld: 0	Name: Rot	
	Δx:	Δy:	Δz:	
<pre>\$</pre>	Trans: Rot ▼ x: 0.0 Hx: 0.0 B: 0.5	y: 0.0 Hy: 0	z: 0.0 Hz: 2.0	Solid placement: Call <u>"Rot"</u>
\$end_transform	N. 0.5			
■ USRBIN Type: R-Φ-Z ▼	Rmin: 0.0	Unit: 21 BIN ▼ Rmax: 0.5	Name: Fluence NR: 50	>
Part: PROTON V	X: 0.0 Zmin: 0.0	Y: 0.0 Zmax: 2.0	ΝΦ: 1 NZ: 200	
ROTPRBIN	Type: ▼ Rot: -Rot ▼	Storage: Rot2: ▼	# Events:	Mesh placement: Call <u>"- Rot"</u>

Building modular geometries

Bounding box

In the geometry lectures we saw that defining the "VOID" around objects can be quite difficult

Complex "VOID"

Complex object

Good practice: use a finite body (RPP, RCC, etc.) as a container for the whole object

Solution: the Bounding Box

Bounding box

Only the Bounding Boxes have to be subtracted from the surrounding regions

Object location

- It is always easier to build an object around the origin:
 - It makes possible to use measurements from technical drawings directly
 - The final object can be translated / rotated into its final position with geometry directives

Naming conventions

- If multiple people are working on a complex geometry (multiple experimental halls and beamlines) it could happen that a body or region name is used twice, which leads to geometry errors
- Solution: agree on a naming convention, e.g. set prefixes for each object
- For example:

- 1st character: Beamline
- 2nd character: Object type
- 3rd character: Object number
- 4th-8th character: Free

- The **ROT-DEFI** card defines roto-translations
- Geometry directives (inside the geometry input) manipulate bodies

• \$start_translat	<pre>\$end_translat</pre>
<pre>\$start_transform</pre>	<pre>\$end_transform</pre>
<pre>\$start_expansion</pre>	<pre>\$end_expansion</pre>

• The **ROTPRBIN** card sets the correspondence between a roto-translation transformation and selected **USRBIN** and **EVENTBIN** scorings

• Tips on how to more easily build complex geometries

