

Radiation Protection calculations

Beginner course – CERN, December 2024

In this lecture

Exposure of persons and **activation of components and materials** are the core considerations for Radiation Protection (RP) related simulations

Topics treated in this lecture:

• External exposure to ionizing radiation of persons

- General concepts
- Prompt radiation
- Decay radiation

Activation

Radiological characterization

Not in this lecture

(but in the FLUKA Advanced & Topical RP Courses)

- Advanced transport thresholds for RP calculations
- More on activation
 - Applications of radiological characterization: clearance, transport, emission/immission limits
 - Activation of liquids or gases in circuits
 - Fluence spectra-based methods
- Advanced scoring options in FLUKA
 - USRBIN generalized particles ACTOMASS and ACTIVITY
 - Accessing region-based full inventory information
 - User routines for advanced scoring

External Exposure – General concepts

External Exposure

- Exposure of persons and activation of components and materials are the core considerations for Radiation Protection (RP) related simulations
- The particle cascades induced by the beam particle (prompt radiation) may trigger nuclear reactions that result in unstable radionuclides (activation)
- The decay of these radionuclides leads to residual radiation;
 - present even when the beam has stopped
- Persons can be exposed to prompt radiation and/or residual radiation; both need to be estimated!

External Exposure

- The prompt radiation is related to the cascade generated by the primary beam
 - E.g., radiation penetrating a shielding structure when the beam is operating
 - Scored in pSv/primary
 - Normalization with beam intensity (e.g., protons/h) is needed to get dose rates (e.g., mSv/h)
- The residual radiation is related to an irradiation profile and a cool-down time
 - Radiation emitted by radionuclides generated during the irradiation and cool-down time
 - Scored in pSv/s
 - Normalization for beam intensity is done via irradiation profile

External Exposure

- RP quantities (ambient dose equivalent or effective dose [Sv = J/kg]) are not physical quantities directly simulated
 - The (absorbed) dose (energy deposited per unit mass [Gy = J/kg]) is a physical quantity!
 - The fluence is a physical quantity!

- FLUKA estimates of these quantities are based on particle fluence
 - From fluence [cm/primary/cm³=1/primary/cm²], a dose-like quantity [Sv/primary] is obtained via a fluenceto-dose conversion coefficients [pSv cm²]
 - From radiation fields to FLUKA generalized particles
 - Several fluence-to-dose conversion coefficients are available in FLUKA

Fluence-to-dose conversion coefficients for RP quantities

Ambient dose equivalent H*(10)

- Operational quantity for **area monitoring** (10mm depth in ICRU sphere)
- Set of coefficients: "AMB74"
 - Default choice for dose equivalent calculation when selecting DOSE-EQ
 - Based on ICRP74 recommendations and Pelliccioni data

• Effective dose (E)

- Based on Monte Carlo simulations of human phantoms in certain radiation fields
 - Several sets available, depending on different recommendations and weighting factors (e.g., ICRP74, ICRP116, ICRP60, and Pelliccioni)
- **Recommended sets: ICRP 116** (ED* in **AUXSCORE** card, see later for **AUXSCORE** info):
 - Different irradiation geometries (see picture on the next slide and the FLUKA manual)
 - Defined for protons, neutrons, charged pions, muons, photons, electrons, alphas (AP, PA,ISO); other particles are approximated by these; zero coefficient is applied to all heavy ions

M. Pelliccioni, "Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code", Radiation Protection Dosimetry 88 (2000) 279-297

Fluence-to-dose conversion coefficients – ICRP 116

ICRP 116 irradiation geometries:

- Anterior-Posterior (**AP**), Posterior-Anterior (**PA**)
- Left lateral (LLAT), Right lateral (RLAT)
- Rotational (ROT), Isotropic (ISO)
- Working Out Radiation Shielding Thicknesses (WORST):
 - WORST is the (actual) worst of all irradiation geometries
 - Recommended for shielding design

Fig. 3.2. Schematic representation of the idealised geometries considered. AP, antero-posterior; PA, postero-anterior; LLAT, left lateral; RLAT, right lateral; ROT, rotational; ISO, isotropic.

ICRP, 2010. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116, Ann. ICRP 40(2-5). https://journals.sagepub.com/doi/pdf/10.1177/ANIB 40 2-5

 10^{3}

 10^{4}

How fluence-to-dose conversion coefficients look like:

D. Bozzato, R. Froeschl, Implementation of ICRP116 Fluence to Effective Dose Conversion Coefficients in a FLUKA user routine, CERN EDMS 2439884, 2020.

Fluence-to-dose conversion coefficients – ICRU 95

- Proposed operational quantities from International Commission on Radiation Units and Measurements (ICRU) - ICRU 95;
 - Ambient dose
 - Personal dose
 - 12 different conversion coefficients, depending on the irradiation geometry
 - Directional and personal absorbed dose in the lens of the eyes
 - 8 different conversion coefficients
 - Directional and Personal absorbed dose in the local skin
 - 6 different conversion coefficients
- More info in the FLUKA manual

External Exposure Scoring

- DOSE-EQ is a track-length based scoring
- Scoring options:
 - USRBIN Mesh-based (cartesian or cylindrical):
 - Volume of scoring bin in USRBIN mesh is known to code: volume normalization is automatically applied
 - FLUKA results units for prompt radiation: pSv / primary particle
 - USRBIN Region-based:
 - Volume of scoring region is not known to code: volume normalization is NOT applied
 - FLUKA results units for prompt radiation: **pSv** * (region volume) / primary particle
 - User needs to divide by region volume in post-processing
- Fluence-to-dose conversion coefficients for DOSE-EQ are based on ICRU spheres or human phantoms
 - Assumption: homogenous radiation field according to irradiation geometry
 - Bin sizes of dimensions ≥ 10cm are typically used

Input option: AUXSCORE

- allows to associate scoring estimators with dose equivalent conversion factors
- allows to apply a **filter** within the scoring estimator for a specific generalized particle type

Y AUXSCORE	Type: USRBIN 🔻	Part: PHOTON 🔻	Set: EWT74 🔻
Delta Ray: 🔻	Det: Target 🔻	to Det: 🔻	Step:

- TypeType of estimator to associate with
drop down list of estimator types (USRBIN, USRBDX...)
- PartParticle or isotope to filter for scoringParticle or particle family list
- Det .. to DetDetector rangeDrop down list to select detector range of typeType
- **Step** Step in assigning indices of detector range
- SetConversion factor set for dose equivalent (DOSE-EQ) scoringDrop down list of available dose conversion sets

Note: This card can be used for prompt and residual scorings.

Note:

- Card AUXSCORE can be used to filter particles with all types of scoring
- Not only for RP purposes

External Exposure – Prompt radiation

External Exposure - Prompt radiation

- Scoring prompt radiation
 - Common application: prompt H*(10) rate maps
 - USRBIN with DOSE-EQ generalized particle [pSv/primary]
 - Default fluence-to-dose conversion coefficient: AMB74
 - Other sets: see AUXSCORE (next slide)
- Example (RP calculations exercise)
 - Annular beam, protons at 3.5 GeV kinetic energy
 - Hitting a copper target
 - Radius 4 cm, thickness 30 cm
 - Cylindrical symmetry
 - Scoring DOSE-EQ
 - Normalization: beam intensity is required

Prompt AMB rate with R-Phi-Z binning: 10 cm binning■ USRBINUnit: 21 BIN ▼Type: R-Φ-Z ▼Rmin: 0.Rmax: 200.NR: =200/10

Part: DOSE-EQ ▼ X: 0. Y: 0. NΦ: 1. Zmin: -200. Zmax: 200. NZ: =400/10

Radiation Protection calculations

External Exposure - Decay radiation

External Exposure - Residual radiation

- The generation and transport of decay radiation (including α, β, γ, X-rays, and conversion electrons emissions) is possible during the same simulation which produces the radionuclides (onestep method)
- Consequently, results for production of residual nuclei, their time evolution, and residual doses due to their decays can be obtained in the same run, for arbitrary decay times and for a given irradiation profile.
 - **Two notions of time** for the prompt and residual transport.
 - Scoring during residual transport weighted by irradiation profile and cool-down time
- Different transport thresholds can be set for the prompt and decay radiation transport

Input option: RADDECAY [1/2]

- activates the simulation of the decay of the radioactive nuclides produced
- allows to modify biasing and transport thresholds for the transport of decay radiation

RADDECAY	Decays: Activatio	Replicas: 3.0	
h/µ Int: ignore ▼	h/µ LPB: ignore ▼	h/µ WW: ignore 🔻	e-e+ Int: ignore 🔻
e-e+ LPB: ignore 🔻	e-e+ WW: ignore 🔻	Low-n Bias: ignore 🔻	Low-n WW: ignore 🔻
	decay cut: 10.0	prompt cut: 99999.0	Coulomb corr: 🔻

Decays

Activation study mode

radioactive decays activated for requested cooling times

"activation study mode": time evolution calculated analytically for *fixed* (cooling) times. Daughter nuclei as well as associated radiation is considered at these (fixed) times

Semi-Analogue mode

radioactive decays activated in semi-analogue mode

each radioactive nucleus is treated like all other unstable particles (random decay time, daughters and radiation), all secondary particles/nuclei carry time stamp ("age") Necessary to simulate radioactive sources

- On **isomer "production" activated:** present model roughly estimate the equal sharing among states
- Replicas#number of "replicas" of the decay of each individual nucleus

Patch Isom

Input option: RADDECAY[2/2]

Requests the calculation of radioactive decays

RADDECAY	Decays: Activatio	n 🔻 Patch Isom: On 🔻	Replicas: 3.0
h/µ Int: ignore ▼	h/µ LPB: ignore ▼	h/µ WW: ignore 🔻	e-e+ Int: ignore 🔻
e-e+ LPB: ignore 🔻	e-e+ WW: ignore 🔻	Low-n Bias: ignore 🔻	Low-n WW: ignore 🔻
	decay cut: 10.0	prompt cut: 99999.0	Coulomb corr: 🔻

h/μ Int Low-n WW		switch for applying various biasing features only to prompt radiation or only to particles from radioactive decays			
decay cut, prompt cut		0.1 x input value is us energy cutoffs (defin -> maximum reduction	0.1 x input value is used as multiplication factors to be applied to e+/e-/gan energy cutoffs (defined with EMF-CUT cards) -> maximum reduction factor of 10 possible		
	Examples:	input value for decay cut	= 10	decay radiation production and transport thresholds are not modified (0.1×10)	
		input value for prompt cur	t = 200	prompt radiation threshold increased by factor of 20 (0.1 x 200)	
	Special cas	ses:			
		decay cut = 99999	kill EM casc	ade for residual radiation	
		prompt cut = 99999	kill EM casc	ade for prompt radiation (important feature)	

Input option: IRRPROFI

• defines the irradiation profile (irradiation times and beam intensities)

IRRPROFI Δt: =180* day p/s: 5.9e5 Δt: = 185 * 86400 p/s: 0 Δt: =1.553e7 p/s: 5.9e5	
--	--

Δt #irradiation time [second]

p/s #beam intensity [particles per second]

- zero intensity is accepted and can be used, e.g., to define beam-off periods
- Each card has 6 inputs with 3 durations / intensities (intercalated)
- Several cards can be combined.
- Sequence order is assumed from first card (top) to last (bottom)

Input option: DCYTIMES

• defines the decay (cooling) times measured from the end of the last irradiation period (t=0)

1hour 3	8hours	1day	7days	1month	4months	
	S	t1: 36	00.	t2: 2880	0.	t3: 8.64E4
		t4: 6.0	048E5	t5: 2.59	2E6	t6: 1.0368E7

t1.. t6 cooling time (in seconds) after the end of the irradiation Note: Several cards can be defined.

Each cooling time is assigned an index, following the order in which it has been input. This index can be used in option **DCYSCORE** to assign that cooling time to one or more scoring detectors. A negative decay time is admitted: scoring is performed at the chosen time "during irradiation"

C

Input option: DCYSCORE [1/2]

• associates scoring detectors (radio-nuclides, fluence, dose) with different cooling times (and the irradiation profile)

DCYSCORE	Cooling t: 3600. ▼ Det: Shielding ▼	to Det:	•	Kind: Step:	USRBIN ¥
USRBIN Type: X-Y-Z ▼ Part: ALL-PART ▼	Xmin: -250.0 Ymin: -200.	Unit: Xmax: Ymax:	70 BIN ▼ 150.0 200.0	Name: NX: NV:	Shielding 80.0 80.0

- Cooling tCooling time index to be associated with the detectorsDrop down list of available cooling times
- Kind Type of estimator: RESNUCLE, USRBIN/EVENTBIN, USRBDX, USRTRACK...
- Det .. to DetDetector index/name of kind (SDUM/Kind)Drop down list of available detectors of kind (Kind)

Step step lengths in assigning indices

Input option: DCYSCORE [2/2]

Important note:

All quantities are expressed per unit time when associated to a cool-down time

For example: RESNUCLE Bq (= 1/s)
 USRBIN fluence rate / dose rate (e.g. pSv/s)

In the semi-analogue decay mode, estimators can include the decay contribution (on top of the prompt one) if associated to **DCYSCORE** with a cooling time index -1.0

External Exposure – Residual radiation

- Residual H*(10) dose rate in one-step simulation
- Example (RP calculations exercise):
 - Irradiation profile: 180 days of irradiation at 1e+10 protons/s
 - Cool-down time: 12 hours
 - USRBIN map normalization

Target

Radiation Protection calculations

Geometry modifications

- Exploiting ASSIGNMAT card for describing simple changes of geometry configuration in the simulation
- Examples: target irradiated in a facility and
 - *Addition* of a container for simulating a simple transport scenario (see example below)
 - *Removal* of the surrounding structures and shielding for calculating residual dose rate from the target
 - Removal of the target for calculating residual dose rates from surrounding structures and shielding
- Note: for regions where Mat is not equal to Mat(Decay), radioactive decay radiation originating from that region is ignored.

Radiation Protection calculations

Geometry modifications

Note: in such shielding scenarios, biasing might be needed for the decay step; it might not be trivial to set it up. More details in the FLUKA Advanced course.

Activation

Activation

- Induced radioactivity is an integral part of many RP assessments
 - Total and/or specific (mass) activity for all the various radionuclides
- Examples of use cases
 - Dose due to inhalation or ingestion (dose conversion coefficients needed)
 - Comparison to regulatory limits
 - Clearance, transport, radioactive waste pathways, ...
- Basic Scoring options in FLUKA
 - RESNUCLE Region based
 - Gives access to full inventory information (radionuclide specific incl. isomeric states)
 - Other options: FLUKA Advanced course

Scoring: RESNUCLE [0/3]

- Scoring of nuclei stopped in a given region
 - Exception: stable nuclei that
 - are created in a region that already contains these nuclei in the material description of the region
 - and do not leave the region.
 - Note: one has to pay attention when interested in H or He production
- All residual nuclei are scored when they have been fully de-excited down to their ground or isomeric state.
- Units:
 - If no normalization is provided, results are expressed in [#nuclei/primary]
 - If mass of the region is provided in the card: [#nuclei/g/primary]
- Radioactive decay of residual nuclei over time can be simulated:
 - in combination with <u>RADDECAY</u>, <u>DCYSCORE</u>, <u>DCYTIMES</u> and <u>IRRPROFI</u>le
 - results are expressed in [Bq] at the given cool-down time (DCYSCORE)

Scoring: RESNUCLE [1/3]

Scoring of residual nuclei or activity on a region basis

	RESNUCLE Max Z:		Туре: Мах М:	All 🔻	Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Vol:	TUN_FLOO		
Туре		Type of I	products to	be scored						
		1.0	spallation interactior	products (a ns, i.e. with	II inelastic inter multigroup trea	ractions excep atment)	ot for low-ene	ergy neutron	l	
		2.0 products from low-energy neutron interactions (provided the information is available)								
		3.0	all residua	al nuclei are	scored (if avai	lable, see abo	ove)			
		<= 0.0	resets the	e default (= 1	1.0)		·			
Unit		Logical	output unit	(Default = 1	11.0)					
Max Z		Maximur	n atomic n	umber Z of	the residual nu	uclei distributio	on			
		Default: a	according to	the Z of the	e element(s) of	the material a	assigned to tl	ne scoring re	egion	
Max M		Maximur Default: r the scori	n M = N - Z naximum va ng region.	- NMZ _{min} o alue accordi	f the residual n ing to the A, Z o	uclei distribut of the element	ion (NMZ _{min} = t(s) of the ma	= -5) iterial assigr	ned to	

Scoring: RESNUCLE [2/3]

Scoring of residual nuclei or activity on a region basis

	RESNUCLE	Type: All 🔻	Unit:	26 BIN 🔻	Name:	TUN_FLOO	
	Max Z:	Max M:	Reg:	FLOOR V	Vol:		
Reg		Scoring region name					
		Default = 1.0; if set to -	1.0 or @ALL	REGS scoring	will include	all regions)	
Vol		Volume of the region	in cm ³				
		Default = 1.0 cm^3					
		The scored quantity is	normalized b	y this number.			
		In case mass specific	quantity is r	needed, i.e. [Bo	/g], the <mark>ma</mark>	ss shall be	entered.
Name		Character string ident	tifying the d	etector (max. ²	10 characte	rs !!!!)	

Notes:

- 1. In the case of heavy ion projectiles, the default **Max M**, based on the region material, is not necessarily sufficient to score all the residual nuclei, which could include possible ion fragments
- 2. Residual nuclei from low-energy neutron interactions are only scored if that information is available in the lowenergy neutron data set (see Manual)
- 3. Also, protons are scored (at the end of their path)

Input option for Activation: RESNUCLE[3/3]

Output example (...tab.lis format)

# Detector n: 1	67	31	4.2292E-09	35.36							
ProdTarg											
# A min-A max 1 78	66	29	1.1070E-06	4.374		Nucle	ei Production	Table - Tar	get		4
78 0.000 0.000	66	30	4.3350E-08	21.22	80	1	1	1	I	1	10-4
	66	31	6.3439E-09	39.67	70 -						
70 0.000 0.000									_	_	10 ⁻⁵
69 0.000 0.000	65	28	5.4874E-07	3.121	60 –						j. j. j.
68 5.2866E-09 58.88	65	29	8.9877E-05	0.2307	50			_			. joji
67 8.4585E-09 35.36	65	30	2.7596E-07	6.742	50 -			_	- C		[−] <mark>-</mark> - 10 ⁻⁶ ਦੂ
66 1.1567E-06 3.919	65	31	3.1719E-09	69.39	N 40 -						_ <u>"</u>
65 9.0705E-05 0.2184											eq 7
64 2.4312E-05 0.6704	64	27	4.2292E-09	52.04	30 -	_					
	64	28	4.3730E-06	1.471	20						ctio
# Z min-Z max 1	33 64	29	1.9291E-05	0.8280	20 -						10 ⁻⁸
33 0.000 0.000	64	30	6.4073E-07	5.916	10						- · · ·
32 0.000 0.000	64	31	3.1719E-09	69.39							
31 2.1146E-08 26.93					0 💶	I	45				10 ⁻⁹
30 2.0290E-06 2.901	63	27	1.1313E-07	10.85	0	5 10	15	20	25	30	35
29 3.7067E-04 0.2059	63	28	1.0566E-05	0.7723			~				
28 9.8531E-05 0.3745	63	29	2.2026E-04	0.3408							
27 3.9925E-05 0.4396	63	30	6.8937E-07	3.173							
# A/Z Isotopes:	# A/Z/m	1 Isc	mers:								
68 23 0.000 0.000	24	11	1 1.5490	E-07 4	.344						
68 30 1.0573E-09 99.00	58	27	1 5.2770	E-06 0.	6021						
68 31 4.2292E-09 75.00	60	25	1 5.2866	БЕ-10 9	9.00						
	60	27	1 2.1416	E-06 1	.697						
67 30 4.2292E-09 35.36	62	27	1 2.0723	E-07 4	.304						

Radiation Protection calculations

Input options: **PHYSICS** and packages

Please activate the following cards if scoring of residual nuclei is of interest:

Evaporation of heavy fragments							
*PHYSICS	Type: COALESCE ▼	ActivateOn ▼					
Activation of coalescen	ce treatment						
* PHYSICS	Type: EVAPORAT ▼	^{Model} :New Evap with heavy frag ▼					

Please remember to run with flukadpm or to link RQMD and DPMJET if producing a custom executable.

Input option: BEAM/HI-PROPE

Simulation of a radioactive source

Example:

Radioactive source of 60 Co (two main γ -emissions: 1332.5 keV and 1173.2 keV) cylindrical shape, 2cm diameter, 2mm height along z, centre of cylinder at origin

*BEAM	^{Beam:} Momentum ▼	p:	Part: ISOTOPE ▼
∆p:Flat ▼	Δp:	∆¢∶Flat ▼	Δφ:
^{Shape(X):} Rectangular ▼	Δx:	Shape(Y): Rectangular 🔻	Δy:
[©] HI-PROPE	Z: 27.	A: 60.	Isom:
*BEAMPOS	x:	у:	Z:
	cosx:	cosy:	Type: POSITIVE 🔻
*BEAMPOS	Rin:	Rout: 1.	Type:CYLI-VOL ▼
	Hin:	Hout: 0.2	

Notes:

- Do not forget switching on radioactive decays with the **RADDECAY** card in semi-analogue mode and to associate the scoring detectors with **DCYSCORE** to semi-analogue decay mode!
- Also, a point source is perfectly valid for ISOTOPE beam cards!

Summary

- FLUKA features cover all the typical needs for RP assessments
- In this lecture we have covered, at a beginner level:
 - External exposure
 - Prompt and residual radiation
 - Activation
 - Radiological characterization (region-based)
- All based on very well benchmarked FLUKA physics models and data
- Non-standard needs correspond to advanced solutions (FLUKA Advanced + Topical RP courses):
 - FLUKA user routines
 - Weighting of fluences or radionuclide-specific activities
 - Clearance, transport, radioactive waste pathways

Summary of main input cards

AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

RADDECAY

requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

DCYTIMES

definition of decay (cooling) times

Summary of main input cards

DCYSCORE

associates scoring detectors (radionuclides, fluence, dose equivalent) with different cooling times

RESNUCLE

allows to score residual nuclei production or activity on a region basis

PHYSICS

switch to activate the evaporation of heavy fragments (up to A=24) and the simulation of coalescence

Benchmarks - Selection

CERF Benchmark experiment

Irradiation of samples of different materials to the stray radiation field created by the interaction of a 120 GeV positively charged hadron beam in a copper target

Reference: M. Brugger, S. Roesler, et al., Nuclear Instruments and Methods A 562 (2006) 814-818

Isotope	Copper	Iron	Titanium	Stainless	s Steel	Aluminum	Concrete	
⁷ Be 53.29d	1.47 ± 0.19 M	1.65 ± 0.22	1.50 ± 0.19	0.98 ± 0.24 M	C,N	0.71 ± 0.09 AI	1.17 ± 0.14 O, C	
	0.84 ± 0.25	0.90 ± 0.15						
²² Na 2.60y	0.72 ± 0.11	0.70 ± 0.13 M	0.85 ± 0.11			0.76 ± 0.07 AI	0.86 ± 0.09 Ca,(\$	Si,Mg)
²⁴ Na 14.96h	0.42 ± 0.03	0.48 ± 0.02	0.63 ± 0.02	0.37 ± 0.02	Fe,(Cr,Si)	0.81 ± 0.03 Al,Mg	0.62 ± 0.02 Ca,(\$	Si,Al)
²⁷ Mg 9.46m			0.79 ± 0.14 M			1.52 ± 0.25 Al,Mg		
²⁸ Mg 20.91h	0.25 ± 0.04 -	0.23 ± 0.03 -	0.31 ± 0.02 -	0.29 ± 0.10 M-	- Fe,Ni,Si)		0.29 ± 0.02 - Ca,(\$	Si)
²⁸ AI 2.24m	0.25 ± 0.03 -	0.21 ± 0.02 -	0.31 ± 0.02 -	0.29 ± 0.10 M-	- Fe,Ni,Si)		0.29 ± 0.03 - Ca,(\$	Si)
²⁹ AI 6.56m			0.93 ± 0.25 M					
³⁸ S 2.84h			0.60 ± 0.12 -					
^{m34} Cl 32.00m		0.91 ± 0.19 M	1.19 ± 0.16	0.77 ± 0.15	Fe,Cr,(Mn)		1.25 ± 0.07 Ca	
³⁸ CI 37.24m		0.61 ± 0.08	0.60 ± 0.01	0.58 ± 0.07	Fe,Cr,(Mn)			
³⁹ Cl 55.60m		0.64 ± 0.11 M	0.73 ± 0.08	0.66 ± 0.12	Fe,Cr,(Mn)			
⁴¹ Ar 1.82h	0.39 ± 0.06	0.46 ± 0.05	0.47 ± 0.04 -	0.38 ± 0.05	Fe,Cr,(Mn)		0.98 ± 0.14 Ca	
³⁸ K 7.64m							1.76 ± 0.20 - Ca	
⁴² K 12.36h	0.66 ± 0.10	0.83 ± 0.06	0.95 ± 0.05	0.76 ± 0.09	Fe,Cr,(Mn)		1.21 ± 0.08 Ca	
⁴³ K 22.30h	0.81 ± 0.10 -	0.77 ± 0.05	0.85 ± 0.03	0.74 ± 0.04	Fe,Cr,(Mn)		1.16 ± 0.05 Ca	
⁴⁴ K 22.13m								
⁴⁵ K 17.30m								
4'Ca 4.54d	0.59 ± 0.16	0.56 ± 0.17 M	0.73 ± 0.12	0.51 ± 0.15 M	Fe,Cr,(Mn)		0.79 ± 0.12 Ca	
⁴³ Sc 3.89h	0.40 ± 0.07 -	1.01 ± 0.14	1.28 ± 0.28 -	0.93 ± 0.15	Fe,Cr,(Mn)			
⁴⁴ Sc 3.93h	0.89 ± 0.07	1.06 ± 0.06	0.88 ± 0.05	0.96 ± 0.08	Fe,Cr,(Mn)		0.83 ± 0.06 Fe,(T	ʻi)
^{m44} Sc 58.60h	0.95 ± 0.12	1.20 ± 0.09	2.13 ± 0.12	1.24 ± 0.09	Fe,Cr,(Mn)	1.08 ± 0.17 Fe,Mn	1.67 ± 0.22 Fe,(T	i)
⁴⁶ Sc 83.79d	0.81 ± 0.07	0.86 ± 0.07	0.93 ± 0.08	0.89 ± 0.08	Fe,Cr,(Mn)	0.79 ± 0.18 Mn,(Ti,Fe)	0.88 ± 0.10 Fe,(T	ʻi)
4'Sc 80.28h	1.09 ± 0.14	1.17 ± 0.10 -	0.87 ± 0.07	1.06 ± 0.09	Fe,Cr,(Mn)	1.04 ± 0.15 Mn, (Ti, Fe)	1.00 ± 0.09 Fe,Ti	,(Ca)
⁴⁸ Sc 43.67h	1.39 ± 0.16	1.47 ± 0.10	1.10 ± 0.04	1.42 ± 0.08	Fe,Cr,(Mn)		1.36 ± 0.25 Fe,Ti	i,(Ca)
⁴⁸ V 15.97d	1.16 ± 0.08	1.45 ± 0.06	1.11 ± 0.07	1.44 ± 0.11	Fe,Cr,(Mn)	1.07 ± 0.13 Fe,Mn	1.63 ± 0.16 Fe	
⁴⁰ Cr 21.56h	0.92 ± 0.14	0.97 ± 0.07		1.02 ± 0.08	Fe,(Cr)		1.06 ± 0.23 M Fe	
⁴⁹ Cr 42.30m	1.00 ± 0.22 M	1.24 ± 0.12 -		1.06 ± 0.12	Fe,(Cr)			
³¹ Cr 27.70d	1.06 ± 0.13	1.15 ± 0.12	0.64 ± 0.24 M	1.24 ± 0.16	Fe,Cr	0.86 ± 0.16 Fe,Mn	1.33 ± 0.22 Fe	
⁵² Mn 5.59d	0.68 ± 0.05	1.15 ± 0.04		1.09 ± 0.03	Fe,(Mn)	0.88 ± 0.07 Fe,Mn	1.39 ± 0.07 Fe	
^{III32} Min 21.10m	1.68 ± 0.35	1.24 ± 0.09		1.12 ± 0.10	Fe,(Mn)		1.75 ± 0.79 M Fe	
⁵⁴ Mn 312.12d	1.13 ± 0.12	1.01 ± 0.10		1.08 ± 0.11	Fe,(Mn)	0.96 ± 0.12 Mn, Fe	1.06 ± 0.13 Fe	
³⁸ Min 2.58h	0.81 ± 0.06	0.99 ± 0.05		1.33 ± 0.10	Fe	1.53 ± 0.25 Mn	1.03 ± 0.25 Mn,F	e
⁵² Fe 8.28h		1.09 ± 0.13		0.99 ± 0.19 M	Fe,(Mn)			
⁵⁵ Fe 8.51m								
⁵⁵ Fe 44.50d	0.82 ± 0.09							
°° Co 17.53h	0.66 ± 0.09	0.76 ± 0.04		1.03 ± 0.05	Fe,Ni			
5600	4.04 . 0.00	1.13 ± 0.10		107.011				
Co 77.27d	1.04 ± 0.08	1.15 ± 0.10		1.37 ± 0.11	⊢e,Ni		0.80 ± 0.20 M Fe	
57.00.074.70	0.05 . 0.00	1.79 ± 0.15		1 10 1 0 10	NI			
⁵⁸ Co 70.00	0.85 ± 0.09	0.38 ± 0.09 M		1.16 ± 0.13	NI NI	0.66 ± 0.24 M Cu,Zn,Ni		
60 Co 5 07	0.91 ± 0.09	0.31 ± 0.08 M		0.98 ± 0.10	INI	0.82 ± 0.19 Cu,Zn,Ni		
61 Co 00.00	0.90 ± 0.08							
62 Co 00.00m	0.08 ± 0.08							
57 Ni 25 604	0.76 + 0.11			1 44 + 0.07	NI			
⁶⁵ Ni 35.60h	0.76 ± 0.11			1.44 ± 0.07	INI			
⁶⁰ Cu 22.52 <i>n</i>	1.40 ± 0.29							
⁶¹ Cu 23.70m	0.78 ± 0.08	┨────┤──						
⁶⁴ Cu 40.70	0.87 ± 0.25							
62 70 0 404	0.63 ± 0.10							
⁶³ 7n 29.47	1.05 ± 0.23							
⁶⁵ 7n 04400 /	0.62 + 0.02							
2 11 244.26d	0.62 ± 0.08							
	0.97 ± 0.20							

R = Ratio FLUKA/Exp

0.8 < R < 1.2 0.8 < R ± Error < 1.2 Exp/MDA < 1

R + Error < 0.8 or R – Error > 1.2

Reference:

M. Brugger, S. Roesler *et al.*, Nuclear Instruments and Methods A 562 (2006) 814-818

CERF Benchmark experiment - Results

Dose rate as function of cooling time for different distances between sample and detector

Reference: M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

CERF Benchmark experiment - Results

Dose rate as function of cooling time for different distances between sample and detector

Reference: M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

Measurements of secondary-particle emissions from copper target bombarded with 24-GeV/c protons

FLUKA 2011.2x.7

PHITS 3.20 FLUKA v4-0.0

Measurements and Monte Carlo simulations of high-energy neutron streaming through the access maze using activation detectors at 24 GeV/c proton beam facility of CERN/CHARM

Measurement and calculation of thermal neutrons induced by the 24 GeV/c/c proton bombardment of a thick copper target

PHITS – JENDL-4.0 FLUKA – GW MARS – MCNP4C-ENDF/B-VI

Gold foils at 3 heights

- Bare
- Cd coated

Benchmark Between Measured and Simulated Radiation Level Data at the Mixed-Field CHARM Facility at CERN

-100 -100

0

100 200 300

Z [cm]

400

500 600 700

Quantity @ R10	Rate	(per week)
Total Ionizing Dose	2.70 Gy/h	360 Gy
Thermal neutron fluence	$3 \times 10^{6} \text{ cm}^{-2} \text{s}^{-1}$	$1.5 \times 10^{12} \text{ cm}^{-2}$
High-energy hadron fluence	$1.5 \times 10^{6} \text{ cm}^{-2} \text{s}^{-1}$	$8 imes 10^{11}~{ m cm}^{-2}$

ELUKA

J10⁻¹⁸

800

R13

/POT]

۲ C 10-5

Λb.

eth

unit

measured

[Gy/POT]

 2.39×10^{-14}

 2.01×10^{-14}

 1.21×10^{-14}

 4.27×10^{-15}

 2.32×10^{-15}

 2.67×10^{-15}

 2.03×10^{-15}

 1.71×10^{-15} 2.99×10^{-15}

 10^{-4} ç,

10-6

10-

 10^{-8} per

 10^{-9}

10-12

BLM2

simulated

[Gy/POT]

 3.22×10^{-14}

 3.36×10^{-14}

 1.10×10^{-14}

 5.52×10^{-15}

 3.13×10^{-15}

 2.87×10^{-15}

 2.44×10^{-15}

 10^{-9}

measured/

simulated

0.74

0.60

1.10

0.77

0.74

0.93

0.83

0.57

 $0.79 {\pm} 0.17$

 10^{-6}

 10^{-3}

Energy [GeV]

measured

1.98

2.92

4.93

13.86

21.81

22.36

29.51

30.41

100

BLM1/2 ratio

simulated

1.66

1.59

5.14

9.95

18.09

19.45

23.62

19.37

 10^{3}

measured/

simulated

1.20

1.84

0.96

1.39

1.21

1.15

1.25

1.57

 $1.32 {\pm} 0.27$

9 10⁻¹⁰

n

p

π

a

103

measured/

simulated

0.89

1.10

1.06

0.89

1.07

1.04

0.90

 1.00 ± 0.09

100

 10^{-3}

BLM1

simulated

[Gy/POT]

 5.33×10^{-14}

 5.34×10^{-14}

 5.64×10^{-14}

 5.49×10^{-14}

 5.66×10^{-14}

 5.58×10^{-14}