

Secondary Beam Lines Exercise

First complete beam line in FLUKA

Beginner course – CERN, December 2024

▶ p (protons)
▶ ions
▶ RIBs (Radioactive Ion Beams)
▶ n (neutrons)
▶ p (antiprotons)
▶ e (electrons)
▶ proton/antiproton conversion
▶ proton/RIB conversion

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron AD Antiproton Decelerator CTF3 Clic Test Facility

AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine REX/HIE Radioactive EXperiment/High Intensity and Energy ISOLDE

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

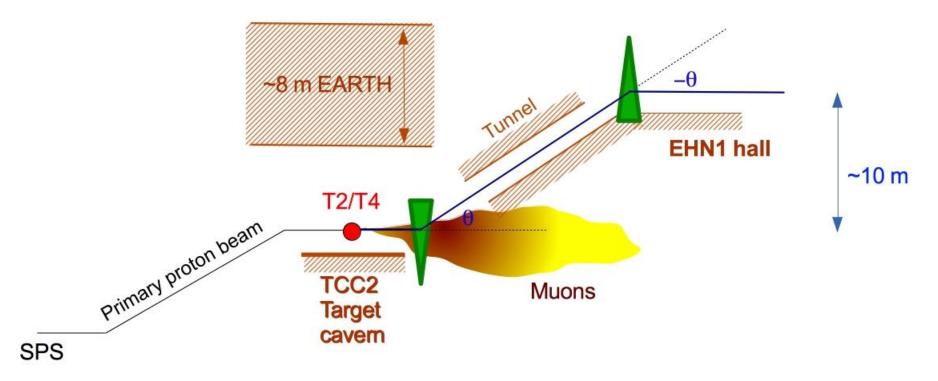
Purpose and Users

Secondary Beam Areas (SBA) are hosting:

• Fixed Target experiments: COMPASS,NA61, NA62, NA63, NA64, CLOUD, ...

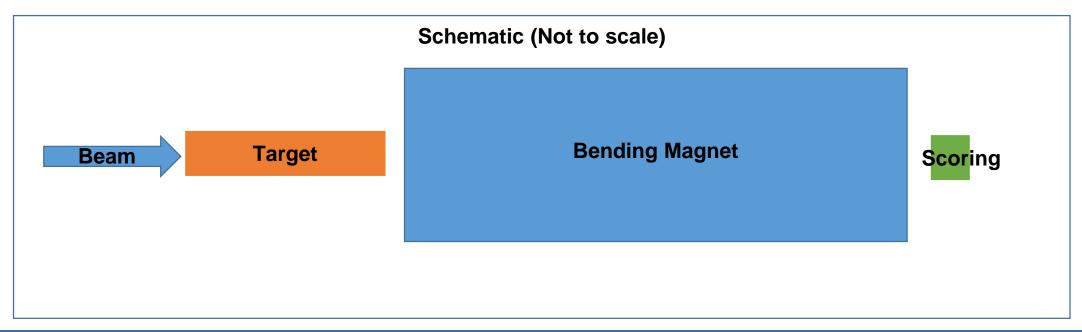
- Precision studies (QCD, standard model, BSM physics)
- Stable beam conditions for weeks and weeks
- Irradiation facilities: HiRadMat, Charm, Irrad, GIF++
- Test beams:
 - Detector prototype tests
 - Detector calibration

e.g. for LHC, linear colliders, space & balloon experiments


- Outreach
- Usually require a large spectrum of beam conditions within few days

North Area beamline design considerations

- Flexibility of particle type and beam settings
- Muon range (absorb underground)
- Charged pion lifetime
- Momentum selection (2·10⁻⁴)



Secondary Beam Lines

Study of CERN secondary beam lines:

- Create your first complete beamline from scratch:
 - Define a primary proton beam
 - Define a target on which the proton beam will collide
 - Define a bending (sweeping) magnet after target
 - Score neutrons and protons after the magnet

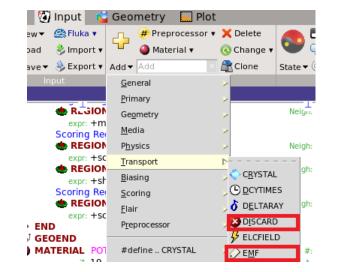
Preparation of the input file

- Start from scratch \rightarrow no input given. You can use the predefined basic examples in FLAIR.
- Define a pencil proton beam (0 divergence and 0 spatial distribution in X,Y) with 400 GeV/c momentum. The beam starts on axis at z = -10 cm.

Define the beam chara	cteristics		
🔅 BEAM	Beam: Momentun	n▼ p: 400.0	Part: PROTON V
∆p: Flat ▼	Δр:	∆¢: Flat ▼	Δφ:
Shape(X): Rectangular	Δx:	Shape(Y): Rectangular 🔻	Δy:

- Create a cylindrical beryllium target of 2 mm diameter and 400 mm long starting at (0,0,0).
- Create a magnet region in vacuum which starts 1cm after the end of the target, with a box of size 1 m × 1 m × 5 m in (X,Y,Z).
- Add a MGNFIELD card and associate it with the magnet region. Add a field in Y of 2 Tesla. Leave the other entries of the MGNFIELD blank.
- Define a scoring region in vacuum with a box of size 1 cm × 1 cm × 1 cm, placed 1 cm after the magnet.

Preparation of the input file


- **Task : Score particles after bending magnet**
- Use **USRTRACK** to score neutron and proton fluence in the scoring region

W USRTRACK		Unit: 21 BIN 🔹	Name: n
Type: Linear 🔹	Reg: scorer 🔹		Vol:
Part: NEUTRON •	Emin: 50	Emax: 400	Bins: 50
WISRTRACK		Unit: 21 BIN 🔹	Name: p
Type: Linear 🔹	Reg: scorer 🔹		Vol:
Part: PROTON •	Emin: 50	Emax: 400	Bins: 50

Preparation of the input file

- Task : Add two transport cards
- Add two transport cards that you can find in FLAIR \rightarrow This will make your simulations faster and discard some particles that are not relevant for our exercise.

😵 DISCARD	p1: MUON+ ▼	p2: MUON- ▼	p3: PION+ ▼
	p4: PION- ▼	p5: KAON+ ▼	p6: KAON- ▼
N EMF	: OFF 🔻		

• After setting the cards, run 4 cycles with 25000 primaries.

Plotting results with Flair

- Plot the magnetic field in the magnet region
- Plot particles fluence after the magnet (in the scoring region) for protons and neutrons. Do the spectra show what you expect?

Secondary Beam Lines – Optional Task

- Assuming that some primaries do not interact on target and exit it undisturbed this is a good approximation in our case (why?) –, calculate the maximum size that your scorer can have in X to not detect 400 GeV/c protons.
- Hint: Use the formula $\vartheta[rad] = \frac{0.29979 \times B[T] \times L[m]}{p[\frac{\text{GeV}}{r}]}$ to calculate the bending angle of the bending magnet. L/2

Secondary Beam Lines – Optional Task

- It's quite common in secondary beams to have two or more experiments placed close by. In this case it's important that none of the experiments create backgrounds for the neighboring ones.
- Assuming that a high energy neutron detector of transverse dimensions of 50 cm × 50 cm and 1 cm thickness is placed on axis at z = 7 m.
- Add a 50-cm concrete block between your beam line and this detector, using an RPP, e.g.:

RPP shield	Xmin: -100	Xmax: 100
	Ymin: -100	Ymax: 100
	Zmin: 591	Zmax: =what(5)+50

• Run 4 cycles with 2500 primaries and score using **USRTRACK**:

WUSRTRACK		Unit: 22 BIN 🔹	Name: n
Type: Linear •	Reg: detector 🔹		Vol:
Part: NEUTRON •	Emin: 50	Emax: 400	Bins: 50

• Check the fluence for high energy (>50 GeV) and make sure it's less than 3.10⁻⁶ cm⁻² GeV⁻¹.

