

Secondary Beam Lines Exercise Solutions

First complete beam line in FLUKA

Beginner course – CERN, December 2024

Secondary Beam Lines

Solutions for secondary beam lines exercise:

- Build the main components as described in the exercise task.
- Set the Magnet region to magnetic

SBL exercise solutions – Input File

Preparation of the input file:

•	Magnetic fi	eld d	efinition: 2	Tesla field in	у
	U MGNFIEI	LD I	Max Ang (deg):	Bound Acc. (cm):	Min step (cm):
			Bx: 0	By:	2 Bz: 0

•	Activated the	magnetic option in field		
	SASSIGNMA	Mat: VACUUM 🔻	Reg: MAGNET 🔻	to Reg: 🔻
		Mat(Decay): 🔻	Step:	Field: Magnetic 🔻

Scoring particles with usrtrack, neutrons in this case					
WSRTRACK		Unit: 21 BIN V	Name: scoren		
Type: Log 🔻	Reg: SCORE V		Vol: 1		
Part: NEUTRON V	Emin: 50.	Emax: 400.	Bins: 50		

SBL exercise solutions

Plotting Field

• In Flair Plot tab, check magnetic field:

SBL exercise solutions

Plotting particles spectra

- In Flair Plot tab, plot spectra:
 - The bending magnet sweeps away all the charged particles, therefore, we can only see neutrons with the defined scorer.

Spectrum for 100000 primaries

SBL exercise solutions – Optional Task

Calculating scoring volume size

• ϑ [rad] can be found using our values:

 $\vartheta[rad] = (0.29979 \times 2[T] \times 5[m])/400[\frac{\text{GeV}}{\text{c}}] = -7 \text{ mrad}$

• To see the displacement in x we can use:

 $x = L/2 \times \vartheta \sim 2 \text{ cm}$

 Therefore, our detector has to have an extension in X less than 2 cm in order to not detect primaries at 400 GeV/c.

SBL exercise solutions – Optional Task

Adding Shielding

• The shielding and detector are added to the geometry:

 The fluence can be checked placing a USRTRACK card in the detector volume as done before:

WISRTRACK		Unit: 22 BIN 🔹	Name: n
Type: Linear 🔹	Reg: detector 🔹		Vol:
Part: NEUTRON •	Emin: 50	Emax: 400	Bins: 50

