NLO QCD and other recents results in POWHEG-BOX-ew

Clara Del Pio with Mauro Chiesa and Fulvio Piccinini INFN Pavia EWWG 4-09-2024

• Recent results from Eur. Phys. J. C 84 (2024) 5, 539 most recent report on Z_ew-BMNNPV with comparison of different input schemes

Results including NLO QCD

Main features of POWHEG Z_ew-BMNNPV

Possibility to select among different EW input and renormalization schemes: •

 $(\alpha_0 / \alpha(M_Z^2) / G_{\mu}, M_W, M_Z)$ $(\alpha_0 / \alpha(M_Z^2) / G_{\mu}, s_{eff}^2, M_Z)$

Different options for resonance treatment: complex-mass scheme, pole scheme, • factorization scheme

Results for weak corrections are presented in the Z-peak region and high energy • region (Sudakov regime)

 (α, G_{μ}, M_Z) $(\alpha(\mu^2), s_w^2(\mu^2), M_z)$

Comparison among input schemes

Asymmetry

Tuning (LEP inspired)

Tun

$$\alpha(M_Z^2) = \frac{\alpha_0}{1 - \Delta \alpha}$$

$$(\alpha_0, s_{eff}^2, M_Z)$$

$$\delta \tilde{r}_{rem} = \Delta \tilde{r}^{(1)} - \Delta \alpha + \Delta \rho^{(1)}$$

$$s_{eff}^2|_{G_{\mu}} = \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{\pi}{\sqrt{2}G_{\mu}M_Z^2}} \alpha(M_Z^2) \left(1 + \Delta \tilde{r}_{HO}\right)$$

$$\Delta \rho = \Delta \rho^{(1)} + \Delta \rho^{(2)}$$

 (α_0, M_W, M_Z)

$$M_W|_{G_{\mu}} = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi}{G_{\mu}M_Z^2}} \alpha(M_Z^2) \frac{1 + \Delta r^{(1)} - \Delta \alpha + \frac{c_W^2}{s_W^2} \Delta \rho^{(1,X)}}{1 + \frac{c_W^2}{s_W^2} \Delta \rho^{(X)}} \right)$$

$$\begin{split} \Delta \rho^{(1,X)} &= \frac{\Sigma_T^{ZZ}(M_Z)}{M_Z^2} - \frac{\Sigma_T^W(M_W)}{M_W^2} \Big|_{fin, \, \mu_{dim} = M_Z} \\ \Delta \rho^{(X)} &= \Delta \rho^{(1,X)} + \Delta \rho^{(2,X)} \end{split}$$

Tuning (LEP inspired) II

Higher orders in Born Improved Approximation with $\alpha(M_Z^2)$ and s_{eff}^2

 (α_0, G_{μ}, M_Z) $\tilde{s}_{w, \text{NLO+HO}}^2 = \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{\pi\alpha}{\sqrt{2}G_{\mu}M_Z^2}}(1 + \Delta \tilde{r}|_{s_w^2})$

 (α_0, M_W, M_Z)

$$\tilde{s}_{w,\,\text{NLO+HO}}^{2} = s_{w}^{2} \left(1 + \frac{c_{w}^{2}}{s_{w}^{2}} \Delta \rho^{(X)} \right) \left[1 - \frac{c_{w}^{2}}{s_{w}^{2}} \Delta \rho^{(1,X)} + \frac{1}{s_{w}^{2}} \frac{1}{2} \frac{g_{L}g_{R}}{(g_{L} - g_{R})^{2}} \operatorname{Re}\left(\frac{\delta g_{L}}{g_{L}} - \frac{\delta g_{R}}{g_{R}}\right) \right]$$

 $(\alpha_0, s_{eff}^2, M_Z)$

already ok

Results of tuning

How can this impact on our uncertainty estimation?

Resonance treatment

Complex-mass scheme

Denner, Dittmaier, Roth, Wackeroth, Nucl. Phys. B 560 no. 1-3, 33-65, 1999 Denner, Dittmaier, Roth, Wieders, Nucl. Phys. B 724 no. 1-2, 247-294, 2005 Denner, Dittmaier, Nucl. Phys. B - Proceedings Supplements 160, 22–26, 2006

 $\mu_Z = M_Z - i\Gamma_Z M_Z$

 $\mu_W = M_W - i\Gamma_W M_W$

Pole scheme

Stuart, Phys. Lett. B 262 no. 1, 113–119, 1991 - Sirlin, Phys. Lett. B 267 no. 2, 240–242, 1991 Gambino, Grassi, Phys. Rev. D 62 no. 7, 2000 - Grassi, Kniehl, Sirlin, Phys. Rev. D 65 no. 8, 2002 Stuart, Phys. Rev. Lett. 70, 3193–3196, 1993 - Dittmaier, Huber, JHEP 2010 no. 1, 2010)

$$\mathcal{M} = \frac{\tilde{R}(\mu_P^2)}{p^2 - \mu_P^2} + \frac{R(p^2) - R(M_P^2)}{p^2 - M_P^2} + \tilde{N}(p^2)$$

Factorization scheme

Argyres et al., Phys. Lett. B 358 no. 3-4, 339–346, 1995 Kurihara, Perret-Gallix, Shimizu, Phys. Lett. B 349 no. 3, 367–374, 1995 S. Dittmaier and M. Krämer, Phys. Rev. D 65 no. 7, 2002

$$f_P(p^2) = \frac{p^2 - M_P^2}{p^2 - \mu_P^2}$$

C. Del Pio 8

Sudakov regime

Channel with d-quarks only: no PDFs dependence \rightarrow no large unphysical distortions at high energies

Sudakov logs

$$A(\alpha, s_w^2) \ln^2 \frac{s}{M_Z^2} + B(\alpha, s_w^2) \ln \frac{s}{M_Z^2}$$

Parameter renormalization logs

$$\frac{1}{\epsilon} - \ln \frac{r_{ct}^2}{\mu_{dim}^2} - \frac{1}{\epsilon} + \ln \frac{r_{bare}^2}{\mu_{dim}^2} = \ln \frac{r_{bare}^2}{r_{ct}^2} \sim$$

Counterterms from parameter renorm.

Bare diagrams

Sudakov regime

Cross section at NLO+ho - (Sudakov + param. renorm. logs)

scheme X $(\alpha(M_Z^2), s_{eff}^2, M_Z)$

NLO QCD effects

Code inputs and definitions

- EW scheme: (α, M_Z, M_W)
- CMS scheme •
- $\sqrt{s} = 8 \text{ TeV}$
- PDF: MSTW2008nlo68cl (LHA 21100)
- factorisation scheme: \overline{MS}

$$\mu_F = \mu_R = M_{\ell\bar{\ell}}$$

		Par	ameter	Value	
			α	$7.297353 \cdot 10^{-3}$	
			G_{μ}	$1.166389 \cdot 10^{-5}$	
		M_Z^*		91.1876	
		Γ_Z^*		2.4952	
			M_W^*	80.385	
			Γ_W^*	2.085	
			M _H	125	
		m _e		$0.51099907 \cdot 10^{-3}$	
		m_{μ}		0.1056583	
		$m_{ au}$		1.77705	
		m _b		4.7	
			m _t	173	
Parameter	Val	ue	* Automa	itically translated to	
m _u	0.06	5983 pole val		lues	
m _d	0.06	6984			
m _s	0.1	15			
m _c	1.	2			

QED corrections

$A_4 = 8/3A_{FB}$

Cod	e:	$89 < M_{\ell \bar{\ell}}[\text{GeV}] < 93$	$60 < M_{\ell ar{\ell}}[{ m GeV}] < 81$	$81 < M_{\ell ar{\ell}}[{ m GeV}] < 101$	$101 < M_{\ell \bar{\ell}}[\text{GeV}] < 150$
$8/3 \cdot [A_{FB} (NLO QED ISR) - A_{FB} (LO)]/10^{-4}$					
MCSA	NC	0.2(3)	-5(2)	0.2(3)	5(2)
WZGR	AD2	0.2(5)	-5(3)	0.3(5)	6(4)
KKMC	-hh	-1.0(6)	0(1)	-0.5(5)	-8(2)
KKMC-hh	(NISR)	-1(2)	0(4)	0(1)	6(8)
RADY (CMS)	0.16(4)	-4.05(3)	0.12(3)	4.90(3)
Α. Ηι	ISS	0.17(1)	-4.07(1)	0.11(1)	4.94(4)
POWHE	EG _{ew}	0.1(1)	-4.0(4)	0.1(1)	4.5(7)
		8/3 · [A _{FB} (N	$ILO QED IFI) - A_{FB} (L)$.O)]/10 ⁻⁴	
MCSA	NC	-2.8(5)	-34(2)	-4.0(4)	-60(3)
WZGR	AD2	-1.1(5)	-37(3)	-2.3(5)	-51(4)
KKMC	-hh	-3.8(6)	-25(1)	-2.1(1)	-53(1)
KKMC-hh	(NISR)	-3.1(6)	-17(1)	-3.2(5)	-60(3)
RADY (CMS)	-1.5(1)	-33.6(4)	-2.49(7)	-59.5(1)
Α. Ηι	ISS	-1.42(6)	-33.9(6)	-2.57(7)	-58.7(3)
POWHEG	$\mu_F = M_{\ell ar{\ell} \gamma}$	-1.2(3)	-62(1)	-2.5(4)	-59(2)
	$\mu_F = M_{\ell ar \ell}$	-1.3(6)	-34(2)	-2.6(7)	-59(3)

• POWHEG_{ew} $\mu_F(1) \Longrightarrow M_{II}$ for real rad calculated with underlying Born momenta • POWHEG_{ew} $\mu_F(2) \implies M_{II}$ for real rad calculated with radiative event momenta differences between $\mu_F(1)$ and (2) expected to decrease when including also QCD corrections 0

F. Piccinini (INFN Pavia)

QED/EW subgroup

11 July 2024 25/31

From last General Meeting July 2024

Overall agreement of the codes

QED corrections

$A_4 = 4 \langle \cos \vartheta \rangle$

Code:		$89 < M_{\ell ar{\ell}}[ext{GeV}] < 93$	$60 < M_{\ell ar{\ell}}[extsf{GeV}] < 81$	$81 < M_{\ell ar{\ell}}[extsf{GeV}] < 101$	$101 < M_{\ell \bar{\ell}}[\text{GeV}] < 150$
		[A ₄ (NLC	\overline{O} QED ISR) $- A_4$ (LO)]	$/10^{-4}$	
RADY (CM	1S)	0.15(3)	-4.05(3)	0.10(2)	4.89(2)
A. Huss		0.16(1)	-4.07(1)	0.11(1)	4.87(2)
POWHEG	ew	0.07(9)	-4.0(3)	0.10(7)	4.8(4)
$[A_4 (NLO QED IFI) - A_4 (LO)]/10^{-4}$					
RADY (CM	1S)	-1.7(1)	-42.3(4)	-2.97(6)	-71.6(2)
A. Huss		-1.68(6)	-42.4(6)	-3.05(8)	-71.2(3)
	$_{F}=M_{\ell ar{\ell} \gamma}$	-1.5(5)	-70(1)	-3.0(4)	-71(3)
	$u_F = M_{\ell \bar{\ell}}$	-1.5(5)	-43(1)	-3.0(4)	-71(3)

- POWHEG_{ew} $\mu_F(1) \Longrightarrow M_{II}$ for real rad calculated with underlying Born momenta
- ۲ POWHEG_{ew} $\mu_F(2) \Longrightarrow M_{II}$ for real rad calculated with radiative event momenta
- at low and high M_{II} virtual QED boxes and I-F real radiation interference break factorization assumption for angular coefficients 0 and the LO equality between the two A_4 def's
- 0 differences between $\mu_F(1)$ and (2) expected to decrease when including also QCD corrections

From last General Meeting July 2024

Overall agreement of the codes

11 July 2024 26/31

NLO QED and QCD corrections - how to combine them?

1: additive method

 $\sigma_{\text{QED+QCD}} = \sigma_{\text{NLOQCD}} + \sigma_{\text{NLOQED}} - \sigma_{\text{LO}} = \sigma_{\text{LO}} (1 + \sigma_{\text{NLOQED}}) - \sigma_{\text{LO}} = \sigma_{\text{LO}} = \sigma_{\text{LO}} (1 + \sigma_{\text{LO}}) - \sigma_{\text{LO}} = \sigma_{$

$$A_{\text{FB}}^{\text{QED+QCD}} = \frac{\left(\sigma_F - \sigma_B\right)^{\text{NLOQED}} + \left(\sigma_F - \sigma_B\right)^{\text{NLOQCD}} - \left(\sigma_F - \sigma_B\right)^{\text{LO}}}{\left(\sigma_F + \sigma_B\right)^{\text{NLOQED}} + \left(\sigma_F + \sigma_B\right)^{\text{NLOQCD}} - \left(\sigma_F + \sigma_B\right)^{\text{LO}}}$$

2: factorized method

$$\sigma_{\text{QED+QCD}} = \sigma_{\text{LO}} \left(1 + \delta_{\text{QCD}}\right) \left(1 + \delta_{\text{QED}}\right)$$

 $A_{\rm FB}^{\rm QED+QCD}$ starting point: $\frac{d\sigma_{\text{QED+QCD}}}{d\cos\theta} =$ $d\sigma_{
m N}$

$$\vdash \delta_{\rm QCD} + \delta_{\rm QED})$$

Equivalent at NLO difference due to $\mathcal{O}(\alpha \alpha_s)$ terms

to be computed bin-by-bin from $d\sigma/d\cos\theta$ - has more complicated expression

$$\frac{d\sigma_{\rm NLOQED}}{\cos\theta} \left(\frac{d\sigma_{\rm NLOQED}}{d\cos\theta} / \frac{d\sigma_{\rm LO}}{d\cos\theta} \right)$$

QED and **QCD** corrections

 $\mu_R = \mu_F = M_{\ell\bar{\ell}} \qquad A_4 = 8/3 \cdot A_{FB}$

89 – 93 GeV	$60-81{ m GeV}$	$81-101{ m GeV}$	$101-150~{ m GeV}$	
	8/3 · .	A _{FB} (LO)		
0.12414(1)	-0.54107(2)	0.119512(8)	0.60292(4)	
$8/3 \cdot [A_{FB}(NLOQCD) - A_{FB}(LO)]/10^{-2}$				
-0.38(4)	2.10(2)	-0.36(3)	-1.86(3)	
$8/3 \cdot [A_{FB}(NLOQCD + QED) - A_{FB}(LO)]/10^{-2}$				
-0.067(9)	27.24(1)	-0.152(6)	-1.79(4)	

	$89 < M_{\ell\bar{\ell}}[\text{GeV}] < 93$	$60 < M_{\ell ar{\ell}}[\text{GeV}] < 81$	$81 < M_{\ell ar{\ell}}[{ m GeV}] < 101$	$101 < M_{\ell ar{\ell}}[\text{GeV}] < 150$
QED	0.423(2)	28.296(3)	0.262(2)	0.27(1)
NLO QCD + QED	0.32(1)	25.14(3)	0.209(9)	0.07(5)
QED FSR	0.439(2)	28.604(7)	0.289(1)	0.87(1)
NLO QCD + QED FSR	0.33(1)	25.42(3)	0.231(9)	0.58(5)
QED ISR	0.001(1)	-0.040(4)	0.001(1)	0.045(6)
m NLO~QCD+QED~ISR	0.002(8)	-0.04(2)	0.002(7)	0.05(3)
QED IFI	-0.013(6)	-0.34(2)	-0.026(7)	-0.59(3)
\mid NLO QCD + QED IFI	-0.01(1)	-0.30(4)	-0.02(1)	-0.52(5)

Numbers obtained with additive method

QED : $[A_{FB} (NLO QED) - A_{FB} (LO)]/10^{-2}$

 $NLOQCD + QED : [A_{FB}(NLOQCD + QED) - A_{FB}(NLOQCD)]/10^{-2}$

QED and **QCD** corrections

 $\mu_R = \mu_F = M_{\ell\bar{\ell}} \qquad A_4 = 4 < \cos\theta >$

$89-93\mathrm{GeV}$	$60-81{ m GeV}$	$81-101{ m GeV}$	$101-150{ m GeV}$		
	$A_4 = 4 < 6$	$\cos heta > (LO)$			
0.031034(1)	-0.135266(3)	0.029878(1)	0.150727(2)		
$[A_4(NLOQCD) - A_4(LO)]/10^{-2}$					
-0.384(4)	2.1(1)	-0.363(3)	-1.89(1)		
$[A_4(NLOQCD + QED) - A_4(LO)]/10^{-2}$					
-0.071(7)	27.154(6)	-0.160(5)	-1.94(3)		

	$89 < M_{\ell \bar{\ell}}[\text{GeV}] < 93$	$60 < M_{\ell \bar{\ell}}[\text{GeV}] < 81$	$81 < M_{\ell \bar{\ell}}[\text{GeV}] < 101$	$101 < M_{\ell\bar{\ell}}[\text{GeV}] < 150$
QED	0.420(2)	28.196(3)	0.256(1)	0.131(8)
NLO QCD + QED	0.313(9)	25.05(1)	0.203(7)	-0.05(4)
QED FSR	0.438(1)	28.553(6)	0.288(1)	0.862(9)
NLO QCD + QED FSR	0.327(9)	25.37(2)	0.229(7)	0.57(4)
QED ISR	0.0007(9)	-0.040(3)	0.0010(7)	0.048(4)
m NLO~QCD+QED~ISR	0.002(6)	-0.04(1)	0.002(4)	0.05(3)
QED IFI	-0.015(5)	-0.43(1)	-0.030(4)	-0.72(3)
NLO QCD + QED IFI	-0.013(9)	-0.37(2)	-0.026(7)	-0.62(5)

Numbers obtained with additive method

QED : $[A_4(NLOQED) - A_4(LO)]/10^{-2}$

 $NLOQCD + QED : [A_4(NLOQCD + QED) - A_4(NLOQCD)]/10^{-2}$

Scale variations at NLO QCD

Asymmetry Still low statistics

Scale variations at NLO QCD+QED

Cross section additive method

This bulk is due to NLO QED corrections: multi-photon emission would reduce the effect

C. Del Pio **20**

Summary and roadmap

- Systematic study of different renormalization and input parameter schemes, as well as tuned realisations of some schemes, can be useful in our discussion on theoretical uncertainties
- Comparison of different schemes at high energy and effects of the Sudakov approximation for NC DY
- NLO QCD corrections with POWHEG and their combination with QED effects studied for A_4 • and A_{FR} together with preliminary exploration of scale variations

To be done:

- plots for asymmetry with QCD+QED combination (higher stat will probably be needed)
- quantification of the impact of using $\mu_F = M_{\ell \bar{\ell}}$ or $\mu_F = M_{\ell \bar{\ell}\gamma}$ at NLO QCD+QED to follow-up previous discussions

