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learning would have required the collection of about four times as much 
data. This is just one of many examples of high-precision tests of the 
standard model at the LHC for which machine learning has markedly 
increased the power of the measurement.

The emergence of deep learning
Machine learning in particle physics, including the examples presented 
in the previous two sections, has traditionally involved the use of 
field-specific knowledge to engineer tools to extract the features of the 
data that are expected to be the most useful for a given measurement. 
This enables the incredibly rich initial data to be interpreted using 
only a small number of features. For example, in the aforementioned 
Bs decay, a human-designed tracking algorithm first reconstructs the 
paths taken by the muon and the antimuon in a magnetized parti-
cle-physics detector, and from these paths the momenta of the particles 
are inferred. However, only the dimuon mass and the angle between 
them are used in the BDT. The rest of the kinematic information is 
discarded.

For many tasks, information can be lost when these human- 
designed tools are used to extract features that fail to fully capture the 
complexity of the problem. As in the fields of computer vision and 
natural language processing26,47, there is a growing effort in particle 
physics to skip the feature-engineering step and instead use the full 
high-dimensional feature space to train cutting-edge machine-learning 
algorithms, such as deep neural networks48. In this approach, domain 
expertise is used to design neural-network architectures that are best 
suited to the specific problem. Studies of such applications have grown 
substantially in number and complexity within the past several years, 
beginning around 2014 with applications of deep neural networks to 
data analysis49, quickly expanding to the first applications of computer 
vision50–52 and to the current broad study of deep learning throughout 
the field of particle physics53–56.

In this section we highlight a few recent applications of two types 
of deep learning algorithm in particle physics: convolutional and 
recurrent neural networks (CNNs and RNNs, respectively)57,58. The 
outputs of many particle-physics detectors can be viewed as images, 
and the application of computer-vision techniques is being explored in  
simplified settings by the LHC community59–65 and with initial studies 
on ATLAS and CMS simulations66,67. However, such techniques are 
more naturally applicable in the area of neutrino physics, for which 
reason we focus our discussion of CNNs to neutrino experiments. 
Similarly, there are many applications of RNNs, but for brevity we 
discuss only their use for the study of high-energy beauty quarks at 
ATLAS and CMS.

Computer vision for neutrino experiments
Loosely inspired by the structure of the visual cortex, CNNs use a strategy  
that decreases their sensitivity to the absolute position of elements in an 
image and that makes them more robust to noise. Deep CNNs are able 
to extract complex features from images and now outperform humans 
in certain image-classification tasks. Another strength of CNNs is their 
ability to identify objects in an image, as demonstrated for example 
by their use in self-driving cars, owing to translation-invariant feature 
learning. This translational invariance presents a challenge for the LHC 
experiments, whose detectors consist of layers of distinct detector tech-
nologies moving out from the proton–proton collision region. These 
detectors provide rich information in the absolute reference frame of 
the detector, which is transformed into a more natural format for a 
CNN-based approach. By contrast, this characteristic of CNNs is par-
ticularly useful for neutrino experiments, which necessarily use large 
homogeneous detectors owing to the incredibly small probability that 
a neutrino will interact within a small volume of material. A neutrino 
interaction can take place anywhere within these detectors and locating 
them is a critical part of neutrino-physics analyses.

The detectors of the NOvA experiment68 are filled with scintillating 
mineral oil, which emits light when a charged particle passes through 
it. Each NOvA event consists of two images: one taken from the top 
and the other from the side. The NOvA collaboration has developed 
a machine-learning algorithm52 composed of two parallel networks 
inspired by the GoogleNet69 architecture. The NOvA CNN extracts 
features from both views simultaneously and combines them to cat-
egorize neutrino interactions in the detector. This network, which 
improves the efficiency of selecting electron neutrinos by 40% with 
no loss in purity, has served as the event classifier in searches both for 
the appearance of electron neutrinos70 and for a new type of particle 
called a sterile neutrino71.

The detector at the MicroBooNE experiment72, which contains 90 
tonnes of liquid argon, detects neutrinos sent from the booster neu-
trino beamline at Fermilab. Each MircoBooNE event corresponds to a 
33-megapixel image that probably contains background tracks caused 
by cosmic rays. Identifying signals of neutrino interactions in such 
events, in which both the signal and background tracks vary in size 
from a few centimetres to metres, is one of the most challenging tasks 
of the experiment. MicroBooNE recently demonstrated the ability to 
detect neutrino interactions using a CNN73. Specifically, an algorithm 
called Faster-RCNN74 uses spatially sensitive information from inter-
mediate convolution layers to predict a bounding box that contains the 
secondary particles produced in a neutrino interaction. In Fig. 3 we 
show an example output in which the network successfully localized a 
neutrino interaction with high confidence. Finally, by taking advantage 
of accelerated computing on GPUs, these CNNs can run much faster 
than the conventional algorithms used by previous neutrino experi-
ments. This makes them ideally suited to the task of real-time image 
classification and object detection.

RNNs for beauty-quark identification
The study of high-energy beauty quarks is of great interest at the LHC 
because these particles are frequently produced in the decays of Higgs 
bosons and top quarks and are predicted to be important components 
of the decays of super-symmetric and other hypothetical particles. A 
high-energy beauty quark radiates a substantial fraction of its energy in 
the form of a collimated stream of particles, called a jet, before forming 
a bound state with an antiquark or two additional quarks. This radiation 
is emitted over a distance comparable to the size of a proton, making it 
impossible to observe the emission process directly. The beauty-quark 
bound states live for only a picosecond, corresponding to millimetre-  
to centimetre-scale flight distances at the LHC, before randomly 
decaying into one of a thousand possible sets of commonly produced 
particles. Therefore, to identify jets that originate from high-energy 
beauty quarks, it is necessary to be able to determine whether parti-
cles were produced directly in the proton–proton collision or in the 
subsequent decay of a long-lived bound state at a location displaced  

Table 1 | Effect of machine learning on the discovery and study of 
the Higgs boson

Analysis
Years of data 
collection

Sensitivity  
without machine  
learning

Sensitivity 
with machine 
learning

Ratio 
of P 
values

Additional 
data  
required

CMS24 
H → γγ

2011–2012 2.2σ,  
P = 0.014

2.7σ, 
P = 0.0035

4.0 51%

ATLAS43 
H → τ+τ−

2011–2012 2.5σ,  
P = 0.0062

3.4σ, 
P = 0.00034

18 85%

ATLAS99 
VH → bb

2011–2012 1.9σ,  
P = 0.029

2.5σ, 
P = 0.0062

4.7 73%

ATLAS41 
VH → bb

2015–2016 2.8σ,  
P = 0.0026

3.0σ, 
P = 0.00135

1.9 15%

CMS100 
VH → bb

2011–2012 1.4σ,  
P = 0.081

2.1σ, 
P = 0.018

4.5 125%

Five key measurements of three decay modes of the Higgs boson H for which machine learning 
greatly increased the sensitivity of the LHC experiments, where V denotes a W or Z boson, γ 
denotes a photon and b a beauty quark. For each analysis, the sensitivity without and with 
machine learning is given, in terms of both the P values and the equivalent number of Gaussian 
standard deviations σ. (We present only analyses that provided both machine-learning-based and 
non-machine-learning-based results; the more recent analyses report only the machine-learning-
based results.) The increase in sensitivity achieved by using machine learning, as measured by 
the ratio of P values, ranges roughly from 2 to 20. An alternative figure of merit is the minimal 
amount of additional data that would need to be collected to reach the machine-learning-based 
sensitivity without using machine learning, which varies from 15% to 125%.
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•2015 NeurIPS ML & Physics workshop: 

• http://yandexdataschool.github.io/aleph2015/  

• https://indico.cern.ch/event/465572/  

• 
First SBI paper with Neural Likelihood Ratios 

• “CARL” paper arXiv:1506.02169  

• 
2016 NeurIPS Keynote 

• https://doi.org/10.6084/m9.figshare.4291565.v1
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Abstract

In many fields of science, generalized likelihood ratio tests are established tools

for statistical inference. At the same time, it has become increasingly common that

a simulator (or generative model) is used to describe complex processes that tie pa-

rameters ✓ of an underlying theory and measurement apparatus to high-dimensional

observations x 2 Rp
. However, simulator often do not provide a way to evaluate

the likelihood function for a given observation x, which motivates a new class of

likelihood-free inference algorithms. In this paper, we show that likelihood ratios are

invariant under a specific class of dimensionality reduction maps Rp 7! R. As a di-

rect consequence, we show that discriminative classifiers can be used to approximate

the generalized likelihood ratio statistic when only a generative model for the data

is available. This leads to a new machine learning-based approach to likelihood-free

inference that is complementary to Approximate Bayesian Computation, and which

does not require a prior on the model parameters. Experimental results on artifi-

cial problems with known exact likelihoods illustrate the potential of the proposed

method.

Keywords: likelihood ratio, likelihood-free inference, classification, particle physics, surro-
gate model

1

ar
X

iv
:1

50
6.

02
16

9v
2 

 [s
ta

t.A
P]

  1
8 

M
ar

 2
01

6

S o m e  p a r a m e t e r i z e d  c l a s s i f i e r  h i s t o r y

•2015 NeurIPS ML & Physics workshop: 

• http://yandexdataschool.github.io/aleph2015/  

• https://indico.cern.ch/event/465572/  

• 
First SBI paper with Neural Likelihood Ratios 

• “CARL” paper arXiv:1506.02169  

• 
2016 NeurIPS Keynote 

• https://doi.org/10.6084/m9.figshare.4291565.v1

42

Approximating Likelihood Ratios with

Calibrated Discriminative Classifiers

Kyle Cranmer1, Juan Pavez2, and Gilles Louppe1
1New York University

2Federico Santa Maŕıa University
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Mainly fast integrals

Generative models for simulation

Detector design, data acquisition and triggering

Data analysis

AI?
Detector reconstruction and tagging
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No truth label for individual events,  
can only hope to constrain !αS

No labeled  data !

Pdata = αSPS + αBPB

Dijet invariant mass

dPn
data = |MS + MB |2 dp1dp2 . . . dpn

MSMB * +MBMS *



10−18m 10−15m 10−6m 100m

Experimental particle physics workflow

This is what happens in the experiment

This is what we want t know

O(10) O(103) O(1010)
Dimensions

Perturbative QCD Markov model Hadronization Detection

Monte Carlo simulation takes us over 20 orders of magnitude in length!



LumiPublicResults 

~40 quadrillion collisions 
recorded at LHC 

(1 fb-1 ~ 100 trillion collisions)

CMSOfflineComputingResults 

6

Why simulation ?

pp collisions up to 
production of stable 

particles

detector response 
simulation with GEANT4

Energy deposits→digital 
signals→reconstructed by 
the reconstruction software

Fully detailed simulation is computationally intensive 

• Geant4 enables accurate simulation : 
 - Simulation problem is defined by a set of components / input 
parameters : geometry of the detector, materials, physics…  
 - MC method is used to solve particle transport equations given the input 
parameters  
 - Based largely on first principles, in some cases tuned to test beam data 

• Geant4 is sequential ! 

O(1) trillion 
simulated events 

278 petabytes of data  
(Netflix 24/7 for more than 15,000 years)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


 

cmsexperiment.web.cern.ch 

We had to collide billions of protons,  
only around 10 signal events were needed to claim discovery!

https://arxiv.org/pdf/1407.0558.pdf
https://cmsexperiment.web.cern.ch/news/using-golden-decay-channel-understand-production-higgs-boson
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Why simulation ?

pp collisions up to 
production of stable 

particles

detector response 
simulation with GEANT4

Energy deposits→digital 
signals→reconstructed by 
the reconstruction software

Fully detailed simulation is computationally intensive 

• Geant4 enables accurate simulation : 
 - Simulation problem is defined by a set of components / input 
parameters : geometry of the detector, materials, physics…  
 - MC method is used to solve particle transport equations given the input 
parameters  
 - Based largely on first principles, in some cases tuned to test beam data 

• Geant4 is sequential ! 

But we have even more 
unlabelled data we’d like 

to use!

We have a lot of high 
quality simulated data 
that we want to use to 

train AI algorithms!
(Simulation != test data)
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Particle Cloud

Jet as a “particle cloud” 

an unordered set of particles, distributed in the η — φ space 

spatial distribution of particles => radiation patterns, aka “substructure”, of jets

proton beams

collision point

outgoing particles
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T E H MCollider Event
Collection of points in (momentum) space

Point  C loud:  Set  o f  N-d imensional  vec tors  
(e .g  se t  o f  par t i c les  and  the ir  4-momentum)
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JET REPRESENTATION: PARTICLE CLOUD
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Particle Cloud

Jet as a “particle cloud” 

an unordered set of particles, distributed in the η — φ space 

spatial distribution of particles => radiation patterns, aka “substructure”, of jets

proton beams

collision point

outgoing particles

η

ϕ

Jet

η

ϕ
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T E H MCollider Event
Collection of points in (momentum) space

Jet  tagg ing  -  our  MNIST!

B-quark?
W boson?



2022/23 - Physics-informed networks 
respecting Lorentz group symmetries!

2024 - Transfer learning from larger dataset

2022 - Transformers

2019 - Message passing graphs

2018 - CNNs

Pre - deep learning

x3 gain from classical 
ML → deep learning!

BETTER!



ABCNet

ABCNet:  
Pixel intensity =  particle importance w.r.t most energetic particle in jet, from attention weights 

Learned through attention! 

Point Cloud Transformers applied to Collider Physics 13

8. Visualization

The SA module defines the relative importance between all points in the set through the

attention weights. We can use this information to identify the regions inside a jet that

have high importance for a chosen particle. To visualize the particle importance, the

HLS4ML LHC jet dataset is used to create a pixelated image of a jet in the transverse

plane. The average jet image of 100k examples in the evaluation set is used. For each

image, a simple preprocessing strategy is applied to align the di↵erent images. First,

the whole jet is translated such that the particle with the highest transverse momentum

in the jet is centered at (0,0). This particle is also used as the reference particle from

where attention weights are shown. Next, the full jet image is rotated, making the

second most energetic particle aligned with the positive y-coordinate. Lastly, the image

is flipped in the x-coordinate in case the third most energetic particle is located on the

negative x-axis, otherwise the image is left as is. These transformations are also used in

other jet image studies such as [34, 18]. The pixel intensity for each jet image is taken

from the attention weights after the softmax operation is applied, expressing the particle

importance with respect to the most energetic particle in the event. A comparison of

the extracted images for each SA layer and for each jet category is shown in Fig. 3 .
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Figure 3. Average jet image for each jet category (columns) and for each self-attention
layer (rows). The pixel intensities represent the overall particle importance compared
to the most energetic particle in the jet.

The di↵erent SA layers are able to extract di↵erent information for each jet. In

particular, the jet substructure is exploited, resulting in an increased relevance to harder

subjets in the case of Z boson, W boson, and top quark initiated jets. On the other

hand, light quark and gluon initiated jets have a more homogeneous radiation pattern,

resulting also in a more homogeneous picture.

ABCNet

https://arxiv.org/abs/2001.05311
https://arxiv.org/abs/2001.05311


AI?
Detector reconstruction and tagging



Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

On-detec tor  ML

From billions of sensors to particles?
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One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).
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machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).

Classical Particle Flow Graph Neural Network

arxiv:2309.06782 

https://arxiv.org/abs/2309.06782
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One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).

Classical Particle Flow Graph Neural Network
arxiv:2309.06782 

https://arxiv.org/abs/2309.06782


Generative models for simulation

AI?



60% of CPU used for simulation!
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Why simulation ?

pp collisions up to 
production of stable 
particles [Easy & Fast]
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Particle reconstruction from 
the simulated or real (data) 

hits in the detector   
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JET REPRESENTATION
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×

MLJet

First and foremost: 
How to represent the data?
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Diffusion models basics
arxiv:2006.11239

Model

Gaussian noise

, y)

22

Diffusion models

Learn systematic decay of information due to noise, then reverse process and 
recover the information back from the noise.  



FastCaloGAN Being used in ATLAS!  

100 networks (slices in η) 

O(500) voxels

ATL-SOFT-PUB-2020-006; ATLAS 
2109.02551



Detector design, data acquisition and triggering

AI?



AI-assisted design of experiments 
doi:10.1016/j.revip.2023.100085 

• Make everything differentiable! 


• Joint optimization of design parameters w.r.t. inference made with data

https://doi.org/10.1016/j.revip.2023.100085


Detector design, data acquisition and triggering

AI?



Blabla 
• Dodge 
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On-detec tor  ML

1 billion collisions /s 
~1 MB of data / collision 

~1 PB of data / s
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Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

On-detec tor  ML

1 PB of data / second
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Blabla 
• Dodge 
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On-detec tor  ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Data temporarily stored  
in detector electronics for 12(4) µs
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On-detec tor  ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Fast ML at the Edge - Sioni Summers8 March 2024

CMS Level 1 Trigger
• Phase 2 Upgrade of CMS L1T will have hundreds of boards with FPGAs like 

those shown below - AMD/Xilinx Ultrascale+ FPGAs 

• Data rate of multiple terabits per second into / out of each board on optical 
fibres 

• System organised in layers with normally ~ 1-2 μs per step 

- Reducing raw detector data into physics objects (e.g. track finding: hits to 
tracks) 

- New event every 25 ns, latency for trigger decision for one event 12.5 μs 

• Final output is one bit: keep or discard event
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 trigger: 
~1000 AMD FPGAs 

Decide which event to 
keep within ~12 µs 

latency 

Discard >99% of 
collisions!
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� ~20Tb/s raw data throughput
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� Distribute clock and control data
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L1 bit: 
Accept = 1 
Reject = 0
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DATA 
99.72% of events rejected! 

110 kHz
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

High Level Trigger: 
25’600 CPUs / 400 GPUs 

Latency: 3-400 ms 

Reject further 99%!
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� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data
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DATA 
99.9975% of events rejected! 

1000 events/second 
~5 GB/s
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0.0025% of collision events remaining

DATA 
99.9975% of events rejected! 

1000 events/second 
~5 GB/s
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To make sure we select “the right” 0.0025%, algorithms must be 

• Fast (get more data through) 
• Accurate (select the right data) 

HIG-19-001 

https://cds.cern.ch/record/2668684?ln=en


New Physics is produced less 
than 1 in a trillion (if at all) 
 
Need more data!

13 TeV

“Probability” of  
producing “anything”

New Physics?
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High Luminos i ty  LHC

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

78 vertices 
(average 60)

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

200 vertices  
(average 140)

LHC

Run 3 Run 4+5

6 cm



Level-1 trigger:  
Latency O(1) µs Detector: 

40 MHz 
~Pb/s

Fast inference on specialised hardware

FPGA inferenceASIC inference

GPU inference

HLT trigger:  
Latency O(100) ms 



266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY: 
370 FPGAs MUONS: 

96 FPGAs

TRACKING 
174 FPGAs

12.5 µs

Trigger 
accept/reject

5 µs

PARTICLE 
FLOW: 

66 FPGAs 

GLOBAL 
TRIGGER: 
12 FPGAs 

*54 for HGCAL only!

63 Tb/s

Xilinx Ultrascale+ FPGAs



12.5 µs

Trigger 
accept/reject

5 µs

Challenges
• Price to pay for high luminosity  

— extreme pileup  
‣ At HL-LHC, expect on average  
200 overlapping pp collisions 

• Particularly challenging for  
trigger system 
‣ Inclusion of tracking central to 

mitigating effects of pileup

!4

ATLAS & CMS:  Trigger System
• Current trigger systems

• L1 trigger
• Hardware-based, implemented in custom-built electronics
• Muon & calorimeter information with reduced granularity, no tracking information

• High-Level Trigger (HLT)
• Software-based, executed on large computing farms
• Tracking information & full detector granularity
• ATLAS use level-2 & event filter, CMS single-step HLT
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ATLAS:  3 physical levels CMS:  2 physical levels

Wesley Smith, U. Wisconsin, October 3, 2013 ECFA – HL-LHC: – Trigger & DAQ -  3 

Journey to HL-LHC 
2012-2013 run: 

•  Lumi = 7 x 1033, PU = 30, E = 7 TeV, 50 nsec bunch spacing 
•  2012 ATLAS, CMS operating: 

•  L1 Accept ≤ 100 kHz,  
•  Latency ≤ 2.5 (AT), 4 µsec (CM) 
•  HLT Accept ≤ 1 kHz 

Where ATLAS & CMS will be: 
•  Lumi = 5 x 1034 

•  <PU> = 140, Peak PU = 192 (increase × 6)  
•  E = 14 TeV (increase × 2)  
•  25 nsec bunch spacing (reduce × 2) 
•  Integrated Luminosity > 250 fb-1 per year  

Need to establish scenario for L1 Accept, Latency, HLT 
Accept & new trigger “features” (e.g. tracking trigger) 

Front  end pipelines 

Readout buffers 

Processor farms 

Switching network 

Detectors 

Lvl-1 

HLT 

Lvl-1 

Lvl-2 

Lvl-3 

Front end pipelines 

Readout buffers 

Processor farms 

Switching network 

Detectors 

ATLAS: 3 physical levels CMS: 2 physical levels 

Detectors

Front end 
pipelines

Readout 
buffers
Switching 
network
Processor 
farms

Detectors

Front end 
pipelines

Readout 
buffers
Switching 
network
Processor 
farms

40 MHz

L1 output:  75 kHz

~3 kHz

200 Hz

40 MHz

100 Hz

L1 trigger decision 
in ~2.5 (4) µs for 

ATLAS (CMS)

L1 output:  100 kHz

40 MHz

100 kHz

~1 kHz

750 kHz

7.5 kHz

LHC HL-LHC
40 MHz

L1 output:

HLT output:

Simulated event display with average pileup of 140
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• Trigger system reduces 40 MHz 
collision rate to data rate that can be 
read out & written to disk 

• w/o tracking, L1 output for PU=200 
is ~4000 kHz

HEP developed 
libraries for fast ML 
on FPGAs 


Nanosecond ML inference on FPGAs!

~40 billion inferences/s during HL-LHC
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TensorFlow / TF Keras / PyTorch / ONNX

scikit-learn / XGBoost / TMVA 
 

  
HLS project: 

Xilinx Vivado HLS, Intel Quartus HLS,  
Mentor Catapult HLS

pip install hls4ml 

pip install conifer

 Vitis 

https://github.com/fastmachinelearning/hls4ml 
https://fastmachinelearning.org/hls4ml/

KERAS / PyTorch / ONNX

TensorFlow DF / scikit-learn / XGBoost

Vivado / Vitis / Intel Quartus / 
IntelOne API / Catapult

https://github.com/fastmachinelearning/hls4ml


Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

Data flow architecture

• Tailored hardware for a model 

• Each layer is separate compute unit 

• Stay on-chip 

• “Decisions are design time”

https://arxiv.org/abs/1804.06913


Idea l ly Real i t y



Idea l ly Real i t y

•Quantization 

• Pruning 

• Parallelisation 

• Knowledge distillation



Quantization

Floating point 32:  
4B numbers in [-3.4e38, +3.4e38] 



Quantization

Quantising: 
int8 28=256 numbers in [-128,127] 

  xq = Clip(Round(
xf

scale
))

https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/


Weights  Layer  1 Weights  Layer  2

FP 32 FP 32



Weights  Layer  1 Weights  Layer  2

FP 32 FP 32< 4,0 > < 4,0 >

Fixed  po in t



Weights  Layer  1 Weights  Layer  2

FP 32 FP 32< 4,0 > < 4,0 >

Fixed  po in t

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: quantization
• In the FPGA we use fixed point representation

- Operations are integer ops, but we can represent 
fractional values

• But we have to make sure we’ve used the correct data types!

0101.1011101010
width

fractionalinteger

Full performance 
at 6 integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance 
at 8 fractional bits
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ReLU ReLU ReLU Softmax

Forward  pass  →

←  Back  propagat ion

Quant iza t ion-aware  t ra in ing

Nature Machine Intelligence 3 (2021)

+

https://www.nature.com/articles/s42256-021-00356-5


 
 
 
 
 
 
 

→Knowledge Dis t i l la t ion

Can we have the best of both worlds? 

Tra in In ference



Dog

Cat



Cat

is cat

is dog



is cat = 0.89

is dog = 0.11

Predicted labels

Teacher 
(already trained)

Cat



is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher 
(already trained)

Cat



is cat = 0.46

is dog = 0.54

is cat = 0

is dog = 1

True labelsPredicted labels

is cat = 0.03

is dog = 0.97

is cat = 0

is dog = 1

True labelsPredicted labels

Soft labels contain information!!



is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher 
(already trained)

Train student to learn both 
true and predicted (teacher) labels! 

Student learns subtle learned features from teacher! 

Distilled  
knowledge

Ltotal = β × LDistillation + α × Lstudent

Cat



CICADA 

Using knowledge distillation for CNN in hardware Calorimeter Trigger!

Anomaly score = input - output

input output

https://cds.cern.ch/record/2879816/files/DP2023_086.pdf


Searches for new particles at LHC
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Anomaly Detection triggers

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Level-1  re jec ts  >99%  o f  events !  
Is  there  a  smarter  way  to  se lec t?



Anomaly Detection triggers

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Reconstruction error
AD threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Everything here 
is normal

Everything here 
is abnormal



Outlier detection
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Compressed representation of x. 
Latent space , k < m⨉n 

prevents memorisation of input, must learn
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Outlier detection

ℜk

x x̂

n × m n × m
E.g 3-prong gluino fat jet

Harder

Cascade decays to light neutralinos (as is expected from natural SUSY) with 

RPV can result in highly boosted resonances (fat jets).
Current limits from multijet searches are weakened in this regime, for various 

reasons:

• the merging jets lead the event to fail the Njet threshold
• there is a hard cut on fat jet mass
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Figure 1: Diagrams for the benchmark processes considered for this analysis. The black lines represent Standard

Model particles, the red lines represent SUSY partners, the grey shaded circles represent e�ective vertices that

include o�-shell propagators (e.g. heavy squarks coupling to a �̃0
1 neutralino and a quark), and the blue solid

circles represent e�ective RPV vertices allowed by the baryon-number-violating � 00 couplings with o�-shell

propagators (e.g. heavy squarks coupling to two quarks). Quark and antiquark are not distinguished in the

diagrams.

2 ATLAS detector

The ATLAS detector [25] covers almost the whole solid angle around the collision point with layers

of tracking detectors, calorimeters and muon chambers. The inner detector, immersed in a magnetic

field provided by a solenoid, has full coverage in � and covers the pseudorapidity range |⌘ | < 2.5.1 It

consists of a silicon pixel detector, a silicon microstrip detector and a transition radiation straw-tube

tracker. The innermost pixel layer, the insertable B-layer, was added between Run-1 and Run-2 of

the LHC, at a radius of 33 mm around a new, thinner, beam pipe [26]. In the pseudorapidity region

|⌘ | < 3.2, high granularity lead/liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are

used. A steel/scintillator tile calorimeter provides hadronic calorimetry coverage over |⌘ | < 1.7. The

end-cap and forward regions, spanning 1.5 < |⌘ | < 4.9, are instrumented with LAr calorimetry for

both the EM and hadronic measurements. The muon spectrometer surrounds these calorimeters, and

comprises a system of precision tracking chambers and fast-response detectors for triggering, with

three large toroidal magnets, each consisting of eight coils, providing the magnetic field for the muon

detectors. A two-level trigger system is used to select events [27]. The first-level trigger is implemented

in hardware and uses a subset of the detector information. This is followed by the software-based

high-level trigger, reducing the event rate to about 1 kHz.
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256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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Example: Jet autoencoders
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Farina et al., arXiv:1808.08992
Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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tagger [13]. It starts from a set of measured 4-vectors sorted by transverse momentum
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Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase
to N = 120 does not make a measurable di↵erence. For jets with fewer constituents we
naturally fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the
rest frame of the fat jet. This also improves the performance of our network. Inspired
by recombination jet algorithms we can add linear combinations of these 4-vectors with a
trainable matrix Cij , defining a combination layer
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We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-
tion on the hadronically decaying massive particles. In the original LoLa approach we map
the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0
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This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.
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DNN anomaly detection in 50 ns BDT selecting 𝛕’s <100 ns 

Firs t  ML t r iggers  in  ATLAS and in  CMS in  2024

CMS DP2023_079 L1CaloTriggerPublicResults 

https://cds.cern.ch/record/2876546/files/DP2023_079.pdf
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t
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N. Ghielmetti et al. 

NN accelerator for quantum control 
• Putting control in cryostat  

(e.g optimal pulse parameters) 

D Xu et al. 

Other examples 
• For fusion science phase/mode monitoring  
• Crystal structure detection  
• Triggering in DUNE  
• Accelerator control  
• Magnet Quench Detection 
• MLPerf tinyML benchmarking  
• Food contamination detection  
• etc….  

 

W. Lemaire et al. 

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
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https://indico.cern.ch/event/1156222/contributions/5062816/attachments/2522993/4338612/fast_ml_2022_gk.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
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•By looking at data, we can learn a lot 

- Go over input  piece by piece 

- Analyze every aspect  

- Compare every feature 

•Find distinctive style of the input 

- can be done e.g by looking for a deviation

Learning the space



Higgs Higgs

Baseline Augmented by  
Reshowering 
    

Augmentation

Embedded Space can use any NN to embed 
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