

超高エネルギー宇宙線伝播中の光核反応

EK+ Astroparticle Physics, **152**, 102866 (2023) A. Tamii+, *Eur. Phys. J. A*, **59**, 208 (2023)

東大宇宙線研 木戸英治

日本物理学会 第79回年次大会 @ 札幌キャンパス

- 宇宙線原子核の相互作用
- PANDORAプロジェクトによる光核反応測定
- ・光核反応のモデル
- 宇宙線伝播シミュレーションを用いた宇宙線実験結果の解釈
- まとめと展望

超高エネルギー宇宙線原子核の相互作用

Interaction with CMB photons (IR photons are also important)

→ Energy of CMB photons: ~1 MILI eV → ~10 MEGA eV in the UHECR nucleus's rest frame (¹²C with ~10²⁰ eV (Γ ~10¹⁰) for example)

- \rightarrow Giant Dipole Resonance(GDR) (peak energy \sim 20 MeV)
- \rightarrow Energy loss by emitting protons, neutrons, helium etc.

超高エネルギー宇宙線原子核の相互作用2

- 宇宙線原子核のエネルギー: ローレンツ因子 「×質量数Aに比例
- 1回の光崩壊によるエネルギー損失: A → A-1 の時
- $E \rightarrow E E/A$
- 軽い原子核で比較的影響が大きい
- CMB(z=0)とのGDRによる エネルギー損失距離の減少: ~A×4・10¹⁸ eV

Motivation of measurements of photo-nuclear reactions by the PANDORA project

- GDRs can be measured with accelerator facilities.
- Systematic uncertainty of photo-nuclear reactions in both theory and experiment of many nuclei with A<90 is not known well.
- Neutron-emitting reactions were mainly studied.
- Proton and α particle emitting reactions are not ignorable for light nuclei.
 - \rightarrow Motivation of (re-)measurements

光核反応のモデル

- Models reflecting measured cross sections
 - PSB
 - A single decay chain is implemented.
 - TALYS
 - Many decay chains and α -particle production are included.
- Theoretical models
 - Ab initio
 - AMD
 - Shell model
 - Density functional theory(DFT)

Cross sections of nuclear experiments are directly reflected in TALYS for the propagation of UHECRs. Theoretical models were **not** used for the propagation of UHECRs. Theoretical models will be used to **predict** photo-nuclear reactions **of nuclei that will not be measured** by the PANDORA project.

DFT, RPA計算を使った宇宙線原子核伝播シミュレーション

- 同じ宇宙線源(Power law, cutoff rigidity, 原子核組成(H, He, N, Si, Fe))が分布していることなどを仮定
- 現象論的でない光核反応モデルを使って宇宙線伝播シミュレーション
 →モデル依存性を評価
- 密度汎関数理論 (DFT) 乱雑位相近似 (RPA) 計算
 - T. Inakura et al., PRC 80, 044301 (2009)
 - T. Inakura *et al.*, *PRC* **84**, 021302(R) (2011).
- 3相互作用モデル
 - **SkM*** : J. Bartel *et al., Nucl. Phys. A* 386, 79 (1982).
 - SLy4 : E. Chanbanat, P. Bonche, P. Haensel, J. Mayer, and R. Schaeffer, Nucl. Phys. A627, 710 (1997).
 - UNEDF1 : M. Kortelainen et al., Phys. Rev. C 85, 024304 (2012).
- 29 安定原子核
- → 反応断面積の計算結果を宇宙線伝播計算コード CRPropaに入れて宇宙線伝播シミュレーション
- → E > 10^{18.7} eV のAuger実験の結果(エネルギースペクトル, InAの平均, InAの分散)と比較
- 1. TALYSのbest fitパラメタを使った時の宇宙線スペクトルの違い
- 2. RPA計算の結果を使ったシミュレーション結果でフィット
- 3. どの原子核が大きな違いを生むのか

GDRピークエネルギー RPA計算 00 SkM* SLy4 UNEDF1 · ⊿ ◬ 70 24 TALYS Δ 0 CRPropa default \Diamond TALYS Ahrens et al. (SLO) Other (SLO) SkM* \odot E_{GDR} [MeV] SLy4 60 . 🖸 🏠 80 過去の実験 \odot 20 \odot UNEDÉ1 \odot \odot ۲ ŏ \diamond ⊘ \Diamond ۵ \diamond $\Delta \Delta$ <u>○</u> Δ Δ RPA計算 50 🔁 🖨 . • 16 40 σ [mb] 100 0 8 30 ∆ ◊ ٥ \odot σ_{GDR} [mb] 20 $\overline{}$ \odot 10 SkM* SLy4 UNEDF1 · \odot \triangle 10 CRPropa default \diamond Ahrens et al. (SLO) \odot Other (SLO) 0 20 30 10 40 50 60 10 20 30 50 40 0 А 原子核静止系 ε' [MeV] -つ-つの原子核のピークの違いは の光子エネルギー 数 MeV程度だが、系統的な違い →結果に最も大きな影響

10

TALYSのbest fitパラメタを使った時の シミュレーション結果の比較

日本物理学会 第79回年次大会 @ 札幌キャンパス

エネルギースペクトルに影響の大きい原子核

まとめ

- ・ 超高エネルギー宇宙線による空気シャワー最大発達大気深さX_{max}の観測
 → 約2・10¹⁸ eVからエネルギーが高くなるほど原子核が重くなる傾向を観測 (Pierre Auger実験).
- 特に軽原子核の光核反応は、実験と理論のどちらも系統誤差を再検討する必要がある。
 → PANDORAプロジェクト
- 宇宙線伝播シミュレーション
 - 過去の実験結果を使ったTALYSと理論的なDFT-RPAモデルを使って、 宇宙線伝播シミュレーションの結果を比較した。
 - エネルギースペクトルへの影響が大きく、光核反応による違いはPierre Auger実験の統計誤差よりも大きい。
 →仮定したモデルでは²⁸Siの光核反応の影響が最も大きい。
- 今後の展望
 - PANDORAプロジェクトの加速器実験による詳細な測定。
 - DFTの相互作用パラメタ調整や平均場近似を超えた補正など、理論的なモデルにも進展が期待される。
 - 超高エネルギー宇宙線観測の進展
 - →将来、宇宙線伝播シミュレーションに反映