

「最新原子核物理学で解き明かす宇宙線伝播機構」 事前打ち合わせ資料

Atsushi Tamii

Research Center for Nuclear Physics, Osaka University, Japan

ver. 2024.8.7

for August 8, 2024, Online

PANDORA Project

PANDORA Project

Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics

PANDORAプロジェクト: 軽核の光核反応

超高エネルギー宇宙線(UHECR)の生成時と観測時をつなぐ

銀河間伝搬時の宇宙マイクロ波背景放射 (CMB)との光核反応

→ エネルギーと質量を失う

生成時から観測時までのエネルギー・質量変化は光核反応によって記述される

軽核(A<60)の光核反応はまだよく分かっていない。

- ・データが極めて少ない。精度が非常に悪い。
- ・モデルによる系統的記述が確立していない。
 既存の核構造モデルの不得手な領域。
 崩壊計算の困難(直接・前平衡過程の重要性)。
- → 精度の高い系統的データを取得 最新の理論モデルで記述(重視されていなかった、良い比較データがなかった) 理論モデルの不定性も評価する(application時の不定性の定量化)。

光核反応の定量的記述の重要性

広い応用範囲

核物理学・宇宙線・天体核物理学において重要のみならず

- ・医学・生物学(放射線の生物学的影響、 γ イメージング)
- ・薬学(治療用アイソトープ生成)
- ・工学(非破壊検査、放射線遮蔽、原子炉設計、核安全技術)

など広い範囲で重要な基礎反応過程 具体的にどういう状況が想定されるか 宇宙飛行士

¹⁶O(人体の65%)や¹²C(同18%)がガンマ線を吸収した場合の、 α線放出(生命体の影響が大きい)の確率がまだ分かっていない。

TALYS等の核反応コードがシミュレーションに用いられることが多い

→ ・計算の不定性は非常に大きい(数倍~10倍?)が認識されていない

・既知の不具合点あり(α崩壊におけるアイソスピン選択則の不適用)

高精度データを基礎に理論計算を整備。予言の不定性も評価する。

コラボレーションの構築

原子核実験

・RCNP: 陽子散乱(仮想光子励起)
 ・iThemba LABS: 陽子散乱(仮想光子励起)
 ・ELI-NP: レーザーコンプトンガンマ線(実光子励起)
 HI r S (LCS)、上海LEGS (LCS)、Oslo (r強度関数)、TU-Darmstadt (tagged-r)
 などの施設の実験グループが参加表明
 光吸収断面積(&崩壊過程)
 崩壊過程
 断面積絶対値、中性子崩壊

原子核理論

- ・AMD: 木村、谷口
- ・大規模殻模型: 宇都野、清水
- ・大規模殻模型: K. Sieja, O. Lenoan
- ・RPA: 稲倉
- RNFT: E. Litovinova, P. Ring
- · QRPA: N. Tsoneva
- ・核反応: 緒方、湊
- TALYS: S. Goriely, E. Khan

UHECRシミュレーション

- ・木戸、長瀧、…
- D. Allard、B. Baret、…

PANDORA Project White Paper AT et al., EJPA59,208(2023) Experiment combining three complementary facilities

Virtual Photon Exp.

<u>iThemba LABS</u> 2024?- ¹²C and ²⁷Al Total strength distribution up 24 MeV p,α,γ -decays multipole decomp. analysis **<u>RCNP</u>** 2023- ^{10,11}B, ^{12,13}C, ²⁷Al and ¹⁶O, ²⁶Mg, ⁴⁰Ca, ⁵⁶Fe, Total strength distribution up 32 MeV and 2024 multipole decomp. analysis p,α,γ -decays

Real Photon Exp.

<u>ELI-NP</u> 2025?absolute c.s. model independent separation of E1 and M1 n,p, α , γ -decays up to 20 MeV

proposal accepted in 2019

proposals accepted in 2020

LoI submitted in 2020

Probing Photo-Nuclear Response of Nuclei

Virtual photo excitation by proton scattering (RCNP, iThemba)

- Missing mass method with proton Coulomb excitation
- better for total strength and strength distribution higher cross sections also applicable for p,α,γ decays

Real photo excitation (ELI-NP)

- Gamma-beam by laser-Compton scattering with an electron beam
- individual decay channels
 better for absolute normalization
 applicable also for *n* and *xn* decays in addition to p,α,γ

8

Targets

Measurements on 10-20 nuclei in ~10 years with theoretical model developments

 $\sigma_{\rm abs}$ distribution in 10% accuracy

Candidate target nuclides

- ¹²C, ¹⁶O, and ²⁷Al
 ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B
- (²⁰Ne), ²⁴Mg, ²⁸Si, ³²S, (³⁶Ar), ⁴⁰Ca N=Z nuclei, α-cluster effect, deformation
 ²⁶Mg, ⁴⁸Ca ⁵⁶Fe N>Z nuclei

light nuclei

- ²⁶Mg, ⁴⁸Ca, ⁵⁶Fe
 ¹³C, ¹⁴N, ⁵¹V
- ^{13}C , ^{14}N , ^{51}V
- (γ,xn) on ¹⁸O, ⁴⁸Ca, ⁶⁴Ni

Measured in the first experiment

odd and odd-odd nuclei

photo-abs. c.s. + charged particle decay + gamma

first cases, alpha decay, reference target

photo-abs. c.s. + gamma

9

First PANDORA Experiment at RCNP, October2023 Experimental setup, September 2023

The first PANDORA experiment at RCNP, Oct. 2023

Y. Sasagawa, DB03 CEU poster session, #4, this afternoon

PANDORA Project White Paper

PANDORA Project for the study of photonuclear reactions below A = 60 Euro. Phys. J. A **59**, 208 (2023)

A. Tamii^{1,2,3,a}, L. Pellegri^{4,5}, P.-A. Söderström⁶, D. Allard⁷, S. Goriely⁸, T. Inakura⁹, E. Khan¹⁰, E. Kido¹¹, M. Kimura^{11,12,13}, E. Litvinova¹⁴, S. Nagataki¹¹, P. von Neumann-Cosel¹⁵, N. Pietralla¹⁵, N. Shimizu¹⁶, N. Tsoneva⁶, Y. Utsuno¹⁷, S. Adachi¹⁸, P. Adsley^{19,20}, A. Bahini⁵, D. Balabanski⁶, B. Baret⁷, J. A. C. Bekker^{4,5}, S. D. Binda^{4,5}, E. Boicu^{6,21}, A. Bracco^{22,23}, I. Brandherm¹⁵, M. Brezeanu^{6,21}, J. W. Brummer⁵, F. Camera^{22,23}, F. C. L. Crespi^{22,23}, R. Dalal²⁴, L. M. Donaldson⁵, Y. Fujikawa²⁵, T. Furuno³, H. Haoning¹⁴, R. Higuchi¹¹, Y. Honda³, A. Gavrilescu^{6,26}, A. Inoue¹, J. Isaak¹⁵, H. Jivan^{4,5}, P. Jones⁵, S. Jongile⁵, O. Just^{11,27}, T. Kawabata³, T. Khumalo^{4,5}, J. Kiener¹⁰, J. Kleemann¹⁵, N. Kobayashi¹, Y. Koshio²⁸, A. Kuşoğlu^{6,29}, K. C. W. Li³⁰, K. L. Malatji⁵, R. E. Molaeng^{4,5}, H. Motoki¹², M. Murata¹, A. A. Netshiya^{4,5,31}, R. Neveling⁵, R. Niina¹, S. Okamoto²⁵, S. Ota¹, O. Papst¹⁵, E. Parizot¹⁰, T. Petruse⁶, M. S. Reen³², P. Ring³³, K. Sakanashi³, E. Sideras-Haddad⁴, S. Siem³⁰, M. Spall¹⁵, T. Suda³⁴, T. Sudo¹, Y. Taniguchi³⁵, V. Tatischeff¹⁰, H. Utsunomiya^{36,37}, H. Wang^{36,38,39}, V. Werner¹⁵, H. Wibowo⁴⁰, M. Wiedeking^{4,5}, O. Wieland²³, Y. Xu⁶, Z. H. Yang⁴¹

A part of the visiting collaborators of RCNP-E563, Sep.-Oct., 2023

Preliminary data from E563

Sakra Front Energy (MeV)

Predictions

AMD + Laplace Expansion (M. Kimura et al.,)

Predictions

