

大平 豊(東京大学)

- ・銀河宇宙線と伝搬の標準モデル
- ・銀河宇宙線の観測と伝搬モデルの比較
- ・断面積の不定性

宇宙線とは、宇宙から飛来する高エ ネルギーの荷電粒子(e⁻,p,…,Fe, e⁺,p̄)

E <10¹⁷ eVの宇宙線は銀河系内起源

100年以上前に発見され、 未だに起源と加速機構は謎のまま。 宇宙物理学最大の謎の1つ。

人類が加速できる1粒子のエネルギーは、 LHC加速器で7x10¹² eV。 天然の加速器では、~10²⁰ eV。

銀河内の熱的粒子エネルギー(温度) ~ 1eV 数密度 ~ 1個/cm³

銀河内の宇宙線エネルギー >~ 10⁹ eV 数密度 ~ 10⁻⁹個/cm³

銀河宇宙線の超新星残骸起源説

超新星残骸

NASAのHPより

Li, Be, B は、C, N, O 起源の2次粒子。F は、Ne 起源の2次粒子。 Sc, V, Ti, Cr, Mn は、Fe 起源の2次粒子。

天の河銀河

銀河内の宇宙線の運動

ー様磁場の場合、磁力線の周りの螺旋運動 → 宇宙線は磁力線に束縛される。 乱れた磁場の場合、複雑な運動 → 宇宙線は、拡散的に振る舞う。 $<(\Delta x)^{2} > \sim D_{xx} t$, $D_{xx} \sim v I_{mfp}/3$, $I_{mfp} = (B_{0}/\delta B_{|=ra})^{2} r_{a}$ $r_a = cP/ZeB \propto E$, $\delta B_{|=ra} = \delta B_{|=ra}(E) \rightarrow D_{xx} \propto E^{\delta}(\delta > 0)$ $\delta B_{|=rg}$ は、ジャイロ半径と同じ波長を持つ磁場ゆらぎの強度 $r_{g}(E=1PeV, B=3\mu G) \sim 1pc$

拡散時間:t_{diff} ~ L²/D_{xx} ∝ E^{-δ} 拡散長:R_{diff} ~ (D_{xx}t)^{0.5} ∝ E^{0.5δ}

1次宇宙線原子核(p, He, C, …, Fe)の銀河内拡散

超新星残骸から解放された宇宙線は、銀河内を拡散しながら地球に届く

▲河の外は磁場が急に弱くなって、一度銀河の外に出 L_{size} た宇宙線は二度と戻ってこない (Leaky box)

$$\begin{split} \frac{d^2 N_{CR}}{dt dE} &= -\frac{d N_{CR}/dE}{t_{esc}(E)} + Q_{s,1}(E) \xrightarrow{\text{\widehat{E}}R} \frac{d N_{CR}}{dE} = t_{esc}(E) \ Q_{s,1}(E) \\ t_{esc}(E) &= L_{size}^2 \ / \ D_{xx}(E) \\ D_{xx}(E) &= D_0 \ (E/E_0)^\delta \\ Q_{s,1}(E) &= Q_0 \ (E/E_0)^{-s} \end{matrix} \qquad \quad \\ \frac{d N_{CR}}{dE} &= \frac{L_{size}^2 Q_0}{D_0} \ (E/E_0)^{-(s+\delta)} \end{split}$$

ジャイロ半径が同じ荷電粒子は同じスペクトルを予言.

2次宇宙線原子核(Li, Be, B, …, p_{bar})の銀河内拡散

銀河内を伝搬中、1次宇宙線は2次宇宙線を生成する。

銀河の外は磁場が急に弱くなって、一度銀河の外に出
L_{size} た宇宙線は二度と戻ってこない (Leaky box)

安定核2次宇宙線と不安定核2次宇宙線からわかることの説明を加える予定。

宇宙線陽子のエネルギースペクトル

観測データは、 $D_{xx}(E)$ または $Q_{s,1}(E)$ または両方が単純な1つのべき型でないことを示す。

様々な原子核のエネルギースペクトル 30 全ての成分でR~200GVに 折れ曲がりあり。 m⁻²s⁻¹sr⁻¹ (GV)^{1.7}. He/140 • Nex1.2 • N/1.1 □ C/4.7 D Mg ■ Na×8 △ Si×1.1 0/5.1 ▲ AI×6 He, C, O ---1次 20 Ne, Mg, Si ---1次 N, Na, Al ---1次+ 2次 **№**^{2.7} 10 \times • Li×1.4 Li, Be, B, F--- 2次 Flux • F×12.8 □ **Be**×2.8 B Δ Aguilar et al. PRL 2021 $R \sim 10TV$ t, 0 **10²** 10^{3} 2×10^{3} **CALET & DAMPE** 2×10^2 30 40 の統計が貯まるのを待つ **Rigidity R [GV]**

2次宇宙線/1次宇宙線(B/C, Be/C, Li/C, …)

$$\frac{dN_{CR2}}{dE} / \frac{dN_{CR1}}{dE} \propto \sigma_{N}(E) E^{-\delta} \qquad \begin{array}{c} s + \delta = 2.85 \\ \delta = 0.333 \end{array} \xrightarrow{\bullet} s \sim 2.5$$

1次宇宙線のR~200GVでの折れ曲がりは、 D_{xx}(E) のエネルギー依存性がそこで折れ ているから。_{σN}(E) ∝ E⁰ を仮定している。

安定2次宇宙線¹¹Bと不安定2次宇宙線¹⁰Be

安定 2 次宇宙線 / 1次宇宙線 ∝ L_{size} / D₀

不安定 2 次宇宙線 / 安定 2 次宇宙線 $\propto L_{size} / D_0^{1/2}$

→2つの観測量から、 宇宙線の銀河スケールの広がり L_{EB} と 拡散係数の絶対値 D₀ を独立に抜き出せる。

最新のAMS-02の結果を説明するには、 宇宙線の銀河スケールの広がりは

 $L_{EB} > \sim 6 kpc$

Evoli et al. PRD 2020

 $D/^{4}$ He, 3 He/ 4 He, Aguilar et al. PRL 2024

D と³He は、⁴He の2次宇宙線と思われていた。 ⁴He と C の伝搬が同じなら、B/C, D/⁴He, ³He/⁴He のエネルギー依存性は同じと期待。 でも、観測はそうではない。⁴HeとCの伝搬が違う?Dが1次宇宙線として加速?

断面積の不定性が与える影響

Génolini et al., PRC, 2024

Dと³He に関する断面積の不定性

Dや³Heの宇宙線観測の結果を有効活用できない。

Gomez-Coral et al., PRD, 2023

銀河宇宙線と原子核断面積との関係に関する文献

- Génolini et al., PRC, 109, 064914 (2024)
- Génolini et al., PRC, 98, 034611 (2018)
- Gomez-Coral et al., PRD, 107, 123008 (2023)
- Weinrich et al., A&A, 639, A131 (2020)
- Maurin et al., A&A, 667, A25 (2022)
- Maurin et al., A&A, 668, A7 (2022)
- Evoli et al. PRD, 99, 103023 (2019)