

LHC Single-pass Dispersion Measurement OMC meeting, August 9, 2024

Vitor Davi de Souza

Introduction

Reconstruction method

Fitting method

Conclusion

Introduction

Introduction

In 2023, on LHC ion run, Alice detected high backgroud.

"Main source likely identified: $- {}^{207}Pb^{82+}$ produced by halo hitting vertical crystal in IR7 - Simulations show outscattered ${}^{207}Pb^{82+}$ ions pass all the way from IR7 to IR2 and hit TCTPV.4L2.B1" [*]

These particles follow a single-pass dispersion (they behave like in a transport line).

In Jan/2024 (70th ABP-NDC section meeting, joint LNO) Tobias proposed a method to measure the single-pass dispersion: "Reconstruction method".

Reconstruction method

Reconstruction method

Definition

 $\eta_{
m rect. \ single} pprox \eta_{
m meas. \ closed} - (\eta_{
m ideal \ closed} - \eta_{
m ideal \ single})$

Simulation

- LHC model: R2024aRP_A200cmC200cmA10mL200cm_0-5
- Random machines with multipoles errors
- "Measured" single-pass dispersion obtained by: TWISS(BETA0=..., DX=0, DDX=0) and TWISS(BETA0=..., DY=0, DDY=0)
- Shifted the model's start to IP7

• Example: two random machines with good and bad agreement. Similar errors, similar optics.

- diff $\text{DX} = \eta_{\scriptscriptstyle X}^{\sf single} \eta_{\scriptscriptstyle X}^{\sf single}$ reconstructed
- diff $\mathsf{DY} = \eta_y^{\mathsf{single}} \eta_y^{\mathsf{single}}$ reconstructed

Statistical analysis

 \rightarrow See if there is any correlation between the optics deviations and the "quality" of the reconstructed single-pass dispersion.

The next plots will show the behavior of **Diff** $(\eta_{(x,y) \text{ meas}}^{\text{single}} - \eta_{(x,y) \text{ rect}}^{\text{single}})$ versus the beta-beat $((\beta_{(x,y)\text{meas}} - \beta_{(x,y)\text{ideal}})/\beta_{(x,y)\text{ideal}})$ and closed dispersion deviation $(\eta_{(x,y)\text{meas}}^{\text{closed}} - \eta_{(x,y)\text{ideal}}^{\text{closed}})$ in multiple random machines.

K_{normal} and K_{skew} Error in quads. DKNR={0, 1e-3, 1e-2, 1e-1}, DKSR={0, 1e-3, 1e-2, 1e-1} Diff = meas_single - reconstructed_single

August 9, 2024

V.D. De Souz

ouza LHC Single-pass Dispersion Meas

 \rightarrow Too much spread on reconstructed single-pass dispersion versus the optics deviations.

 \rightarrow New idea: correct the optics to see if the single-pass dispersion get closer to the ideal.

 \rightarrow Correcting optics with MQM, MQT and MQY.

 \rightarrow Each magnet can receive individual $\Delta {\it K}.$

Fitting method

Fitting method

We followed the "inverse" idea: fit "measured" optics into the ideal model to obtain the single-pass dispersion. \rightarrow Named "fitting method".

Procedure:

- install extra thin lenses in the model
- fit the **measured closed** BETX, BETY, DX and DY using the new lenses.
- get the "fitted" single-pass dispersion

• Example: one random machine, with K_{normal} and K_{skew} errors. The measured optics were fitted into the ideal model using 563 new lenses.

Statistical analysis

 \rightarrow Same correlation plots showed before, now using the "Fitting method".

 \rightarrow Comparison: "fitting" \times "reconstruction" methods.

• diff
$$1 = \eta_{(x,y)}^{\text{single}}$$
 measured $-\eta_{(x,y)}^{\text{single}}$ reconstructed

• diff 2 =
$$\eta_{(x,y) \text{ measured}}^{\text{single}} - \eta_{(x,y) \text{ fitted}}^{\text{single}}$$

August 9, 2024

V.D. De Souza

LHC Single-pass Dispersion Measurement

Conclusion

Conclusion

• The "fitting method" showed better agreement to the measured single-pass dispersion

Next steps:

- Remake the simulations using the R2024aRP_A30cmC30cmA10mL200cm LHC model.
- Measure the single-pass dispersion by fitting the real machine data (LHC optics @ ion run 2023)
- Include the method in optics tools

home.cern