EXOTIC HEAVY QUARK SEARCHES AT THE LHC

V. Erkcan Özcan Boğaziçi University On behalf of ATLAS and CMS Collaborations

4th International Workshop on Top Quark Physics September 25 - 30, 2011 Sant Feliu de Guixols, Spain

THOUND HALF

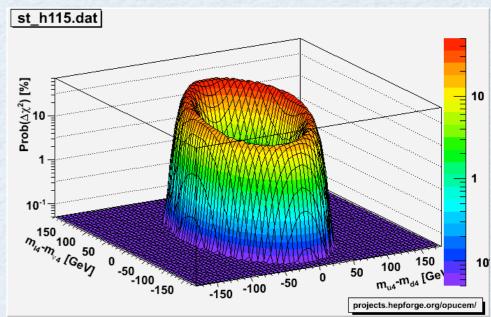
OUTLINE

- Many BSM models predict new heavy quarks: GUTs, extradimensions, little Higgs, new SM-like generations, etc.
 - Can be vector-like, can have flavor-changing neutral current decays, including decays to a little Higgs, etc.
- Initial LHC searches focus mainly on new quarks that are pairproduced & that decay much in the same way as top.
 - Benchmark model simplest extension of SM: 4th sequential generation of fermions.
- In this talk:
 - Motivation, searches for SM4(-like) quarks (dilepton b', dilepton t', semileptonic t') and more exotic stuff
- Not in this talk: Channels studied with MC, but not yet in data

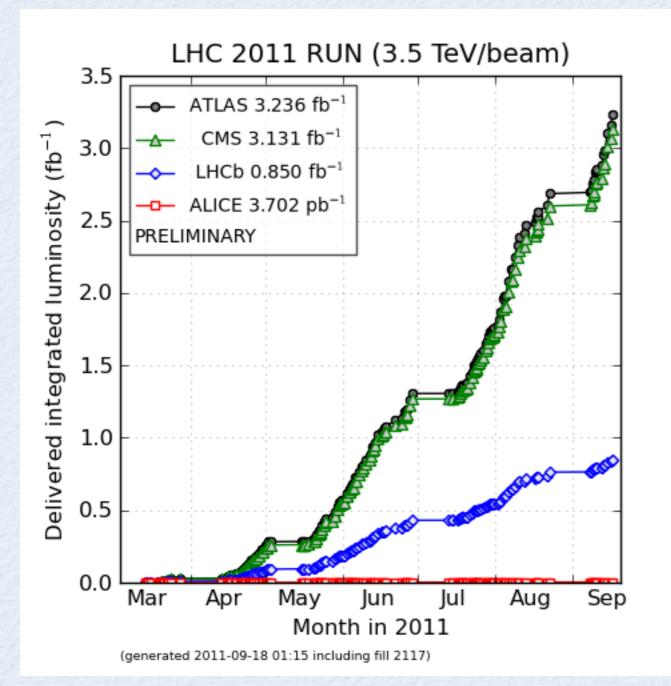
SM4

ALCI UN/DERES

- Simplest extension of the SM:
 - Number of generations not set in SM.
 - On the muon: "Who ordered that?" I.I. Rabi
 - But then we got two full generations of fermions. So the real question: "Who decided not to order more?"
 - Incorrectly considered to have been overruled by EW precision data, recently shown to still have large possible parameter space.
- Many motivations for SM4:
 - Baryon asymmetry, dynamical EW symmetry breaking, SM flavor structure, dark matter neutrinos, help SUSY/technicolor/... to escape LEP/LHC limits, etc. etc.
 - From experimentalist POV: simple model can provide benchmark MC for signature-based new quark/lepton searches, clear predictions, few free parameters, discover or reject at LHC...


Exotic Heavy Quarks @ LHC - V. E. Özcan

Upcoming 3rd WS in Istanbul, October 23-25


SEARCH CHANNELS

- As with top production, pair-production x-section is larger than that of single-production.
 - Exceptions: vector-like quarks, quarks with anomalous couplings, large mixing with other generations, etc.
- Commonly searched channels:
 - Down-type quark b': pp -> b'b' -> tWtW -> bWWbWW (because previous limits set m_{b'}>m_t+m_W)
 - Up-type quark t': pp -> t't' -> bWbW (EW precision data favors |m_{t'}-m_{b'}|<m_W particularly for light Higgs)
 - Similar channels with 4th gen. mixing with light generations.

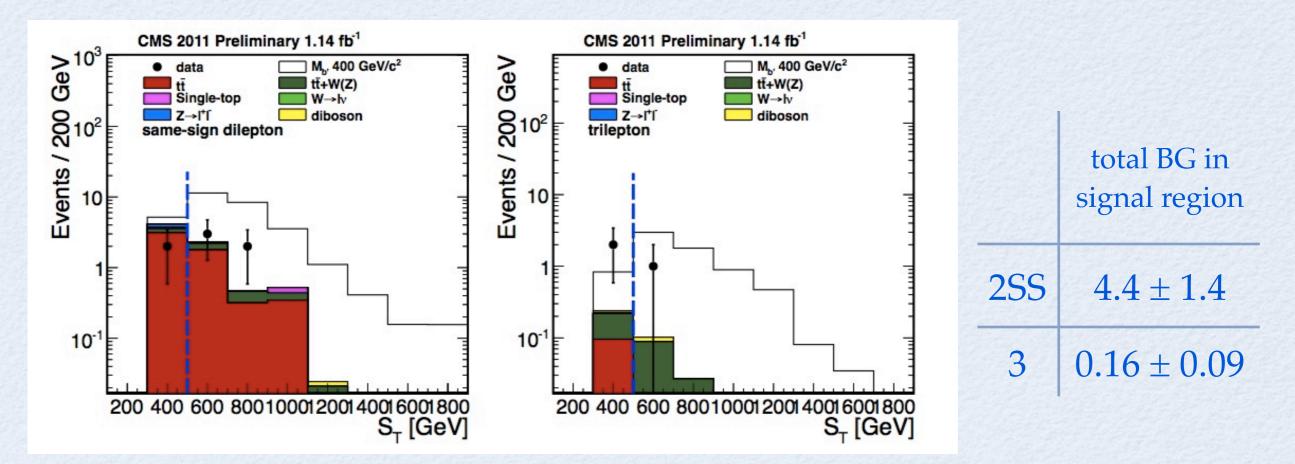
DATA

- LHC has already delivered over 3fb⁻¹ of data at √s=7TeV to ATLAS and CMS each.
- The results here use only a fraction of this data:
 - Earliest analyses are based on ~40pb⁻¹ of 2010 data.
 - Summer 2011 results are based on 0.2-1fb⁻¹.

TOOLS

- Common tools used for the searches:
 - Signal generated with Pythia or MadGraph (particularly when additional partons are considered)
 - Signal cross-sections are from HATHOR (approx. NNLO).
 - Backgrounds: CMS generates them also with Pythia, Madgraph.
 - ATLAS uses MC@NLO for tt background, Alpgen for V+jets, Herwig for dibosons.
 - k-factors for x-sections from MCFM, FEWZ.
 - Pythia (Herwig+Jimmy) is used for hadronization, fragmentation, parton showering, underlying event etc. by CMS (ATLAS).
 - Detector simulation is done with GEANT4.
 - When fake leptons are a source of background, data-driven determination is common. Based on loosening lepton ID criteria and extracting tight vs. loose efficiencies in control samples. => Common with many of top analyses.

CMS SEARCH FOR B' PAS EXO-11-036



b'b' -> tWtW -> bWWbWW

- 2 SS or 3 isolated l=e, μ in final state (7.3% of total decays)
 - dilepton triggers (ε=92-99% dependent on FS)
 - P_T^{e,μ}>20 GeV, |η^{e,μ}|<2.4 (also reject 1.44<|η^e|<1.57)
 - Lepton isolation: $\alpha^{e}=0.06-0.07$; $\alpha^{\mu}=0.15$
 - [ΣE_T (within $\Delta R=0.3$) pileup contribution] < $\alpha^{e,\mu} \times PT^{e,\mu}$
 - For same-flavor leptons, Z-veto: |m_{ll}-m_z|>10 GeV
- Anti-kt R=0.5 jets with P_T^j>25 GeV, |η^j|<2.4
 b-tagging based on IP significance (50% tagging eff., 1% mistag)
 - n_{jet}>=4(2) for 2SS/3 lepton channel ; n_{b-jet}>=1
- $S_T = \Sigma P_T$ (leptons)
 - + ΣP_T(jets) + E_T^{miss} > 500 GeV

1.1.1	$M_{\mathrm{b}'}$	cross section	same-sign dilepton		trilepton	
	$[\text{GeV}/c^2]$	[pb]	efficiency [%]	yield	efficiency [%]	yield
,	350	3.20	1.16 ± 0.15	42	0.33 ± 0.06	12
	400	1.41	1.36 ± 0.17	22	0.42 ± 0.06	6.7
	450	0.662	1.51 ± 0.18	11	0.45 ± 0.07	3.4
	500	0.330	1.57 ± 0.19	5.9	0.48 ± 0.07	1.8
	550	0.171	1.80 ± 0.22	3.5	0.57 ± 0.08	1.1

- For 2-SS-lepton analysis: single-lepton events with an extra misidentified or nonisolated lepton, dilepton events with a charge-misidentified electron, or events with prompt same-sign dilepton ==> Main contribution from tt
- For 3-lepton analysis: dominated by processes with 3 prompt leptons, ie. tt+W(Z)
- Charge mis-id and "fake" lepton backgrounds estimated using data. (loose vs. tight lepton ID)

RESULTS FOR B

PAS EXO-11-036

	same-sign d	lilepton	trilepte	on	$\int CMS \ 2011 \ Preliminary \qquad 1.14 \ fb^{-1} \ \sqrt{s} = 7 \ TeV$
	$\Delta \epsilon / \epsilon$	ΔB	$\Delta \epsilon / \epsilon$	ΔB	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Accuracy of control-sample method	-	1.02	-	-	\Box
Control sample statistics	-	0.49	-	-	$ \begin{array}{c} \Box \\ \Box $
Integrated Luminosity	4.5%	0.03	4.5%	0.007	
Background normalization	-	0.39	-	0.059	
Lepton selection	4.4 - 4.5%	0.03	6.2 - 6.5%	0.010	
b-tagging	10%	0.07	10%	0.016	α(b)
Pile-up events	2.3%	0.35	3.4%	0.053	Б -
Jet energy scale	1.4 - 3.2%	0.12	0.4 - 4.3%	0.008	
Jet energy resolution	0.8-2.4%	0.51	0.6 - 3.5%	0.010	10-1
Missing energy resolution	0.1 - 3.1%	0.10	0.6 - 6.0%	0.014	10 ⁻¹
Trigger	2.3%	0.07	2.3%	0.004	Limit at 95% CL: M _b > 495 GeV/c ²
PDF	0.3 - 0.7%	0.06	0.7 - 1.8%	0.005	
Simulated sample statistics	3.1 - 4.0%	0.05	5.6 - 7.4%	0.025	350 400 450 500 550
Total	12 - 13%	1.4	14 - 17%	0.09	M _{b'} [GeV/c

total BG in
signal regionobserved
events2SS 4.4 ± 1.4 53 0.16 ± 0.09 1

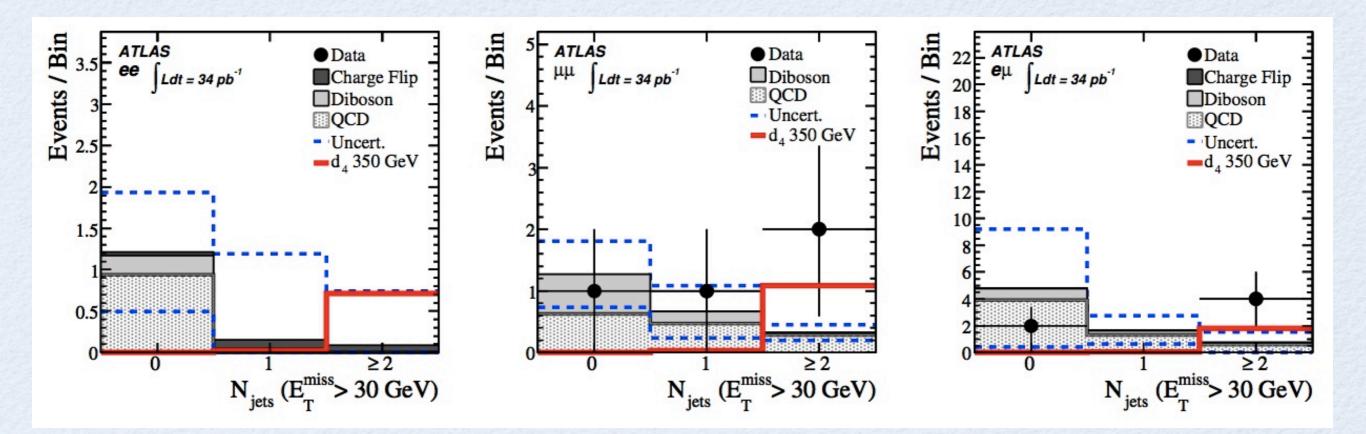
Using a Bayesian method with lognormal prior, and assuming BF(b'->tW) = 1 :

m(b') > 495 GeV @ 95% CL

SS DILEPTONS @ ATLAS

arXiv:1108.0366

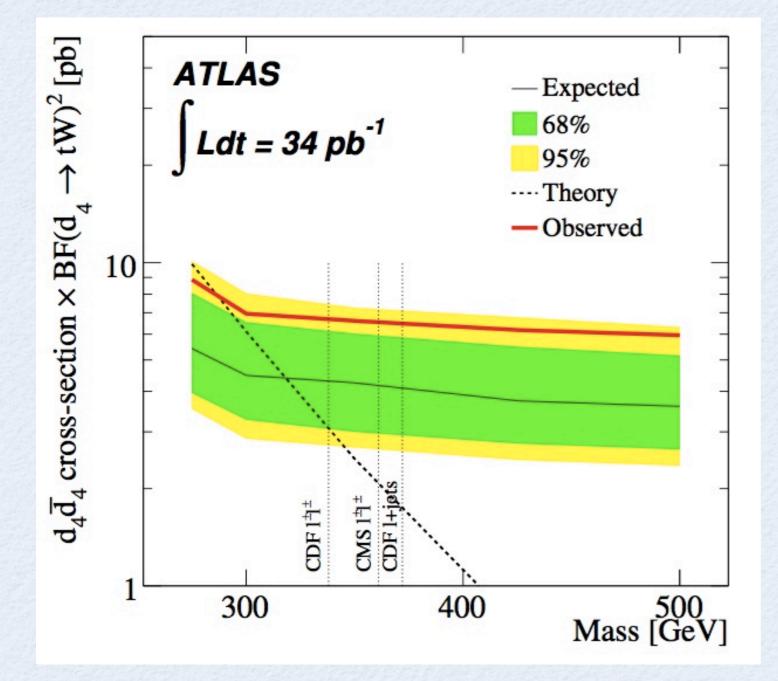
- A generic search for two SS ee, eμ, μμ pairs (Limits on UED, SUSY, heavy Majorana neutrinos & b' quarks)
- Selection very similar to CMS SS analysis, but without b-tag and S_T requirements.
 - 2 SS l=e, μ , with tight lepton ID
 - single lepton trigger
 - $P_T^{e,\mu}$ >20 GeV, $|\eta^{\mu}|$ <2.5, $|\eta^e|$ <1.37 or 1.52< $|\eta^e|$ <2.47
 - Lepton isolation:
 - [ΣE_T (within $\Delta R=0.2$)] < 0.15 $\times P_T^{e,\mu}$
 - In ee channel, Z-veto: 80<|m_{ee}-m_z|<95 GeV
 - Anti-kt R=0.4 jets with P_T^j >30 GeV, $|\eta^j|$ <2.5
 - muons within $\Delta R=0.4$ of b-tagged jets of $P_T^{j}>20$ GeV vetoed
 - E_T^{miss}>30 GeV


Exotic Heavy Quarks @ LHC - V. E. Özcan

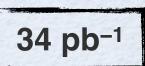
SS DILEPTONS

arXiv:1108.0366

- Backgrounds:
 - QCD jets faking/creating isolated leptons (mainly from dijet & W+jets)
 - Charge Flip electron charge mis-measurement
 - Diboson irreducible SM background (mainly from WZ production)


Exotic Heavy Quarks @ LHC - V. E. Özcan

SS DILEPTON RESULTS



Binned max likelihood fit, in three jet multiplicity bins (0, 1, 2+ jets).

- Assuming BF(b'->tW)=1, limits at 95% CL:
 - Expected limit: m(b')>330 GeV
 - Observed limit: m(b')>290 GeV

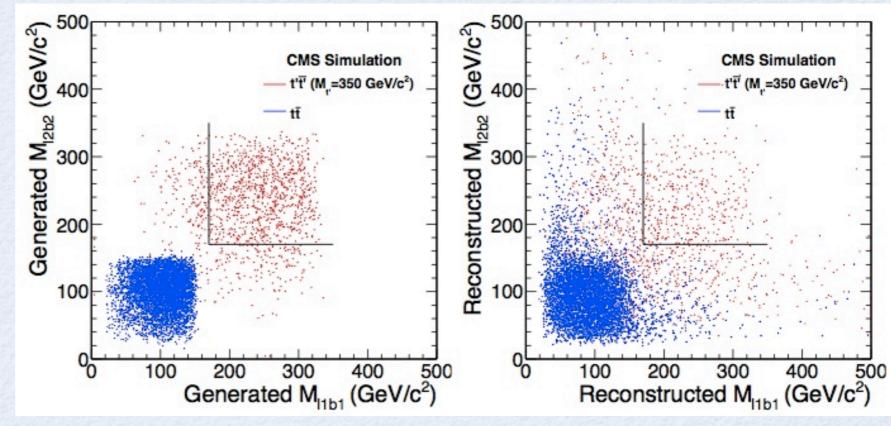
μμ channel has recently got updated to **1.6 fb⁻¹**, but the results have not been interpreted for a heavy quark yet. See <u>ATLAS-CONF-2011-126</u>

Fully-leptonic channel SEARCH FOR T'

PAS EXO-11-050

- Much like a heavy top: t't' -> bWbW
 - Two decay channels: fully-leptonic, semi-leptonic
- The cuts for the fully-leptonic channel is very similar to those used in the b' search. For example, from CMS:
 - 2 (or more) OS isolated $l=e,\mu$ in final state
 - dilepton triggers (ϵ =90–100% dependent on FS)
 - P_T^{e,μ}>20 GeV, |η^e|<2.4, |η^μ|<2.4
 - Lepton isolation: [ΣE_T (within $\Delta R=0.3$)] < 0.15 $\times P_T^{e,\mu}$
 - Z-veto: |M_{II}-m_Z|>10 GeV
 - Anti-kt R=0.5 jets with P_T^j>30 GeV, |η^j|<2.5, separated from leptons b-tagging based on IP significance (50% tagging eff., 1% mistag)
 - n_{jet}>=4 ; n_{b-jet}>=2
 - E_T^{miss}>30GeV

KINEMATIC CUT ON T

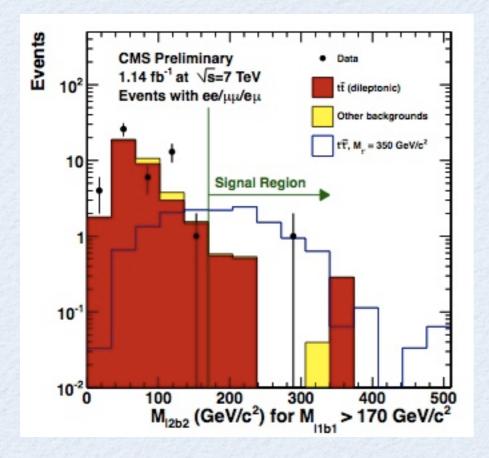

PAS EXO-11-050

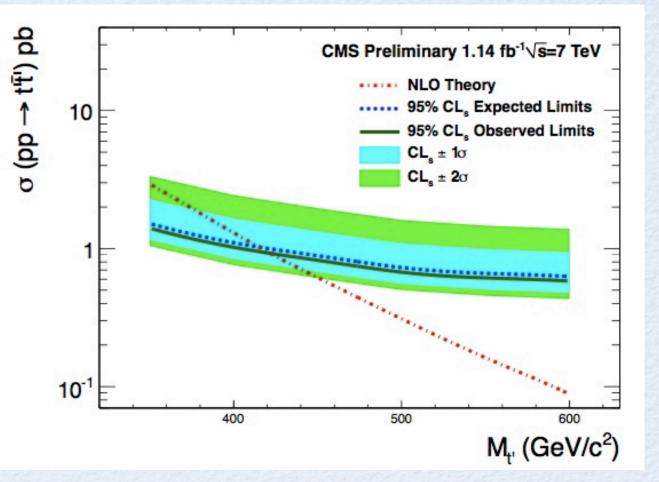
• After basic selection, fully-leptonic decays of tt dominate!

Sample	ee	μμ	eµ	all	
$t'\bar{t}', M_{t'} = 350 \mathrm{GeV}/c^2$	5.63 ± 0.41	5.63 ± 0.38	13.43 ± 0.61	24.69 ± 0.83	stat
$t'\bar{t}', M_{t'} = 400 \mathrm{GeV}/c^2$	2.51 ± 0.18	$\textbf{2.92} \pm \textbf{0.19}$	6.33 ± 0.28	11.76 ± 0.38	uncertainties
$t'\bar{t}', M_{t'} = 450 \mathrm{GeV}/c^2$	1.45 ± 0.09	1.53 ± 0.09	3.27 ± 0.14	6.25 ± 0.19	
$t\bar{t} ightarrow \ell^+ \ell^-$	167.46 ± 5.85	178.88 ± 5.71	445.45 ± 9.30	791.79 ± 12.38	only
		0 10 1 0 10			and the second second second

• Use invariant masses of lepton and b-jet pairs as discriminant.

- At gen. level, very sharp distinction between signal & tt.
- At reco level, pair b and l based on min(ΔR).
- m(l_ib_i)>170GeV, i=1,2
 - €^{sig}≈40%
 - ε^{††}≈O(0.001)

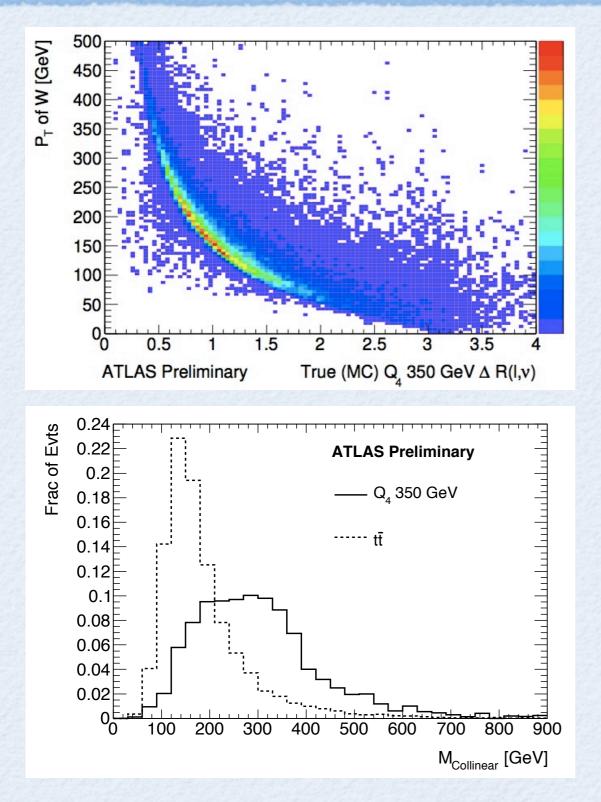

Exotic Heavy Quarks @ LHC - V. E. Özcan



Fully-leptonic channel RESULTS FOR T'

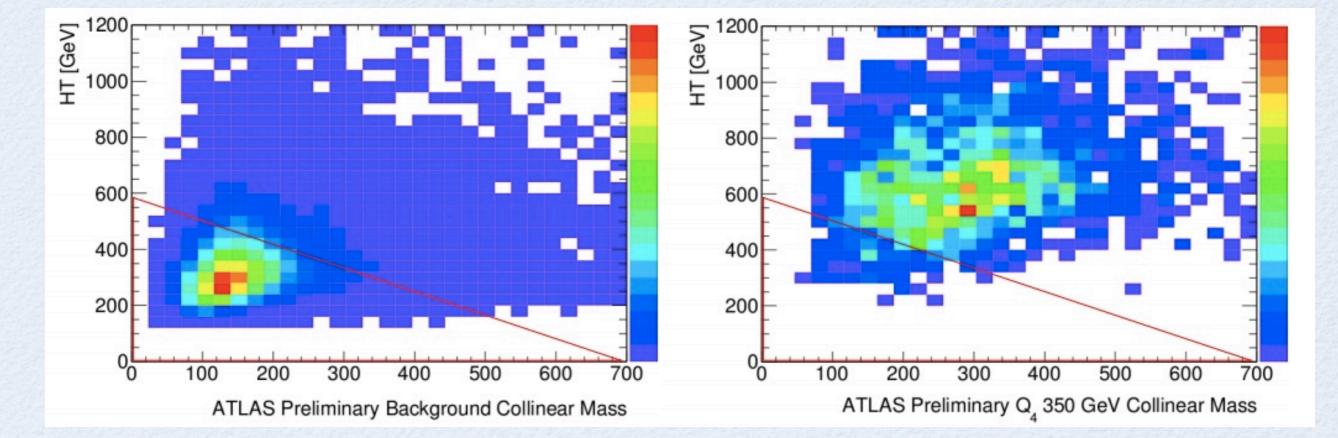
PAS EXO-11-050

Sample	Yield	Prediction source	
$t\bar{t} ightarrow \ell^+ \ell^-$	1.35 ± 0.67	Data	
Fake leptons	$0.0^{+0.4}_{-0.0}$	Data	
$DY \rightarrow e^+e^- \text{ or } \mu^+\mu^-$	$0.07^{+0.13}_{-0.07}$	Data	
$\text{DY} \rightarrow \tau^+ \tau^-$	0.11 ± 0.11	Simulation	
Di-boson	0.02 ± 0.02	Simulation	
Single top	0.07 ± 0.04	Simulation	
Total prediction	$1.62^{+0.80}_{-0.70}$		
Data	1		


- Largest background (tt->ll) estimated from m(libi) sidebands.
- Single event observed for 1.62 expected.
- Assuming BF(t'->bW) = 1 : m(t') > 422 GeV @ 95% CL

Fully-leptonic channel T' RECONSTRUCTION

ATLAS-CONF-2011-022


- No assumptions about quark mixing, ie. the final state is: t't' -> qWqW
- ATLAS tries to reconstruct two HQ masses (m_{Collinear}) in the event, from 4momenta of jet+l+v.
- high PT Ws => l & v are approx. collinear.
- Reconstruct $|\Delta \eta(l,v)|$ and $|\Delta \Phi(l,v)|$ for each v is a free parameter, allowed to vary in the range (0,1).
- Assume E_T^{miss} solely from 2 vs.
- Find |Δη(l,ν)|, |ΔΦ(l,ν)| values and jet assignment which minimizes difference between two m_{Collinear}.

Exotic Heavy Quarks @ LHC - V. E. Özcan

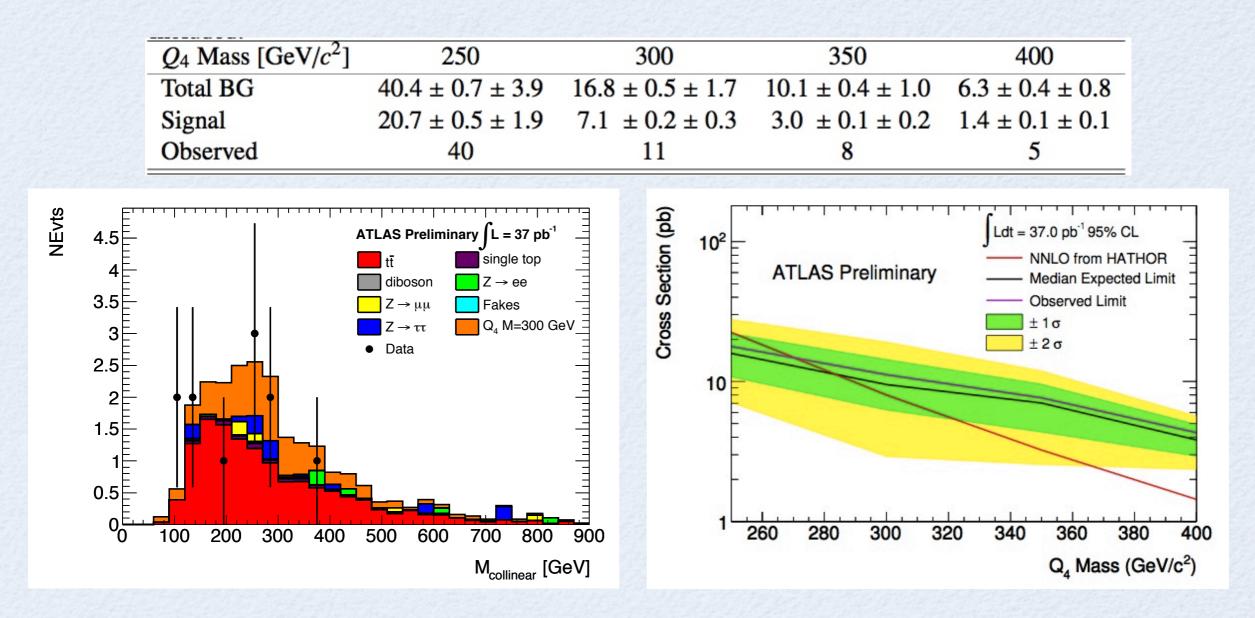
Fully-leptonic channel

T' KINEMATIC CUTS

ATLAS-CONF-2011-022

- Triangular cut in H_T-m_{Collinear} plane, optimized for various m_t'.
- S:B improved to be around 1:2.

	~ .
Q_4 Mass (GeV)	Final selection
250	$H_{\rm T}$ > 500 – 0.7 × $M_{collinear}$
300	$H_{\rm T}$ > 600 – 0.5 × $M_{collinear}$
350	$H_{\rm T}$ > 600 – 0.2 × $M_{collinear}$
400	$H_{\rm T}$ > 700 – 0.3 × $M_{collinear}$

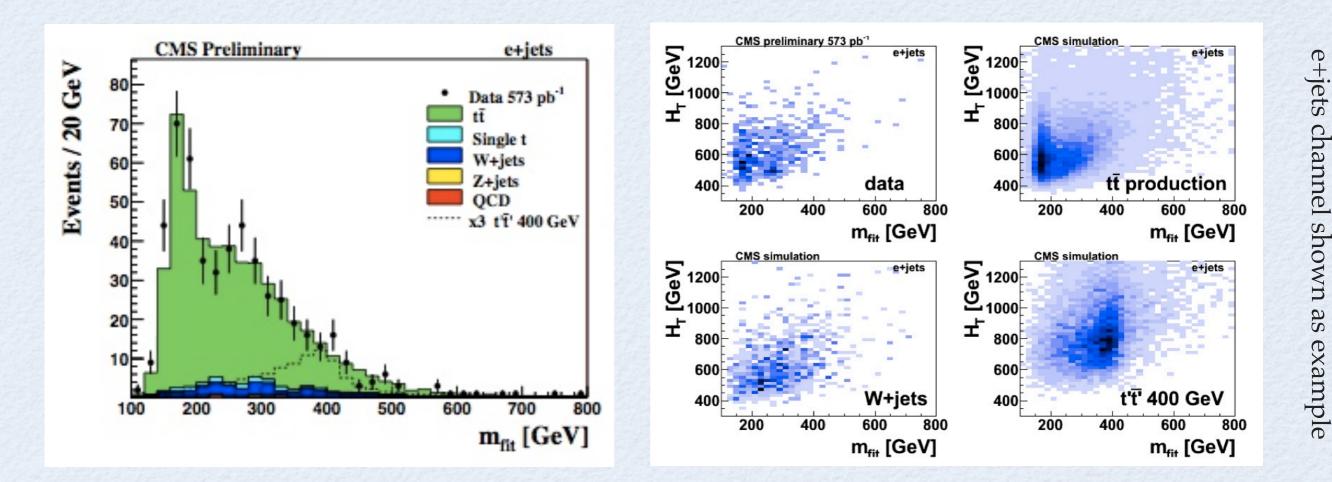


Fully-leptonic channel

RESULTS FOR T'

ATLAS-CONF-2011-022

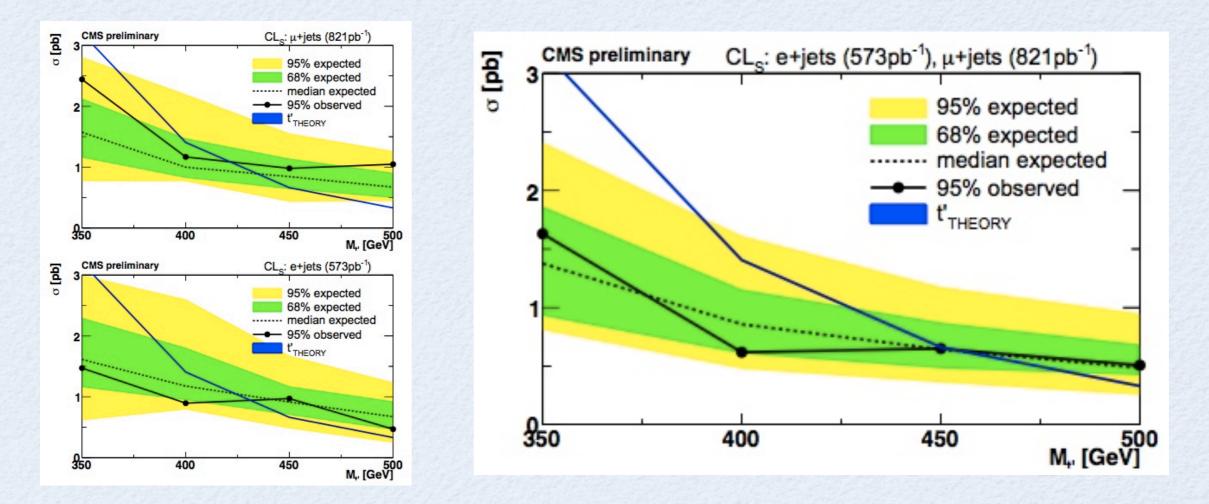
Binned max. likelihood to derive: m(t') > 270GeV @ 95%CL.
 => Limit applicable to other exotic quark searches.



Lepton + Jets Channel SEARCH FOR T'

- ALCI UNIVERSITES
- PAS EXO-11-051

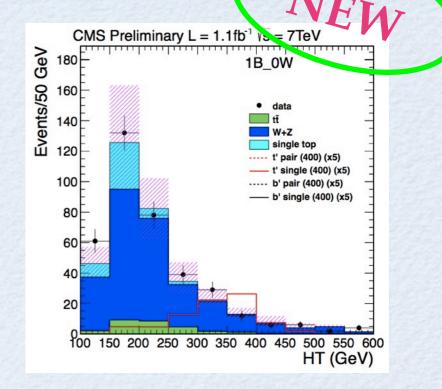
- Final state: t't' -> WbWb -> lvbjjb
- Cuts differ significantly from the dilepton case
 - $P_T{}^e{>}30{-}45~GeV$, $|\eta^e|{<}2.5$ (excluding transition region) or $P_T{}^\mu{>}35~GeV$, $|\eta^\mu|{<}2.1$
 - At least four jets with $\mathsf{P_T}^j$ > 120, 90, 35, 35 GeV Jets within ΔR =0.3 of the lepton vetoed
 - At least one b-jet
 - E_T^{miss}>20GeV

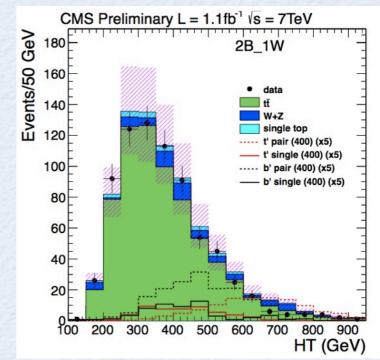

- Take four-jet combinations out of the hardest 5 jets.
- Use W mass contraints and the fact that the 2 reco t' masses should be equal.
- Perform kinematic fit minimizing the χ^2 computed from the measured momenta of all final-state particles and their resolutions.
- Obtained t' mass (m_{fit}) is used together with H_T for extracting yields.

AND INCOMPANY

RESULTS FOR T

PAS EXO-11-051

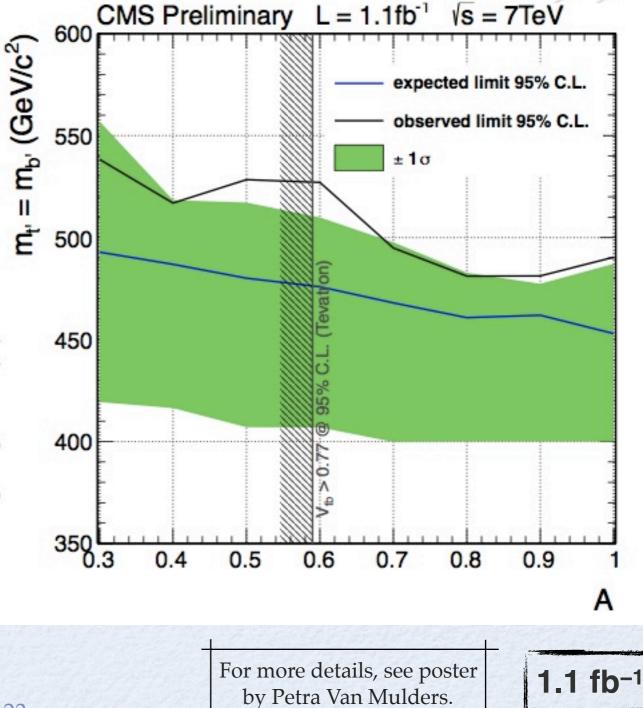



- Simultaneous fit to the H_T-m_{fit} histograms of the e&µ channels to obtain limits with CLs. Nuisance parameters to take into account jet E-scale, σ_{tt}, contribution from EW backgrounds, uncertainties on lepton ID eff, btagging eff.
 - 95%CL lower limit assuming B(t'->Wb)=1 : m(t')>450 GeV

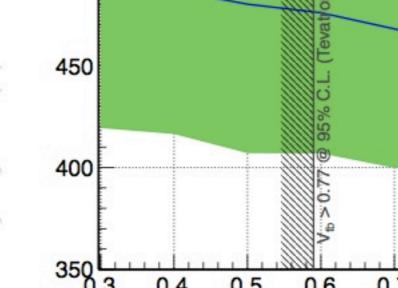
573 pb⁻¹ e+jets 821 pb⁻¹ μ+jets

4G INCLUSIVE SEARCH PAS EXO-11-054

- Inclusive analysis including single and pairproduction of degenerate 4th gen. quarks
 - t'b -> bWb ; b't -> t_{bW}WbW ;
 t't' -> bWbW ; b'b' -> t_{bW}Wt_{bW}W
- Search carried in 6 subsamples, based on n_{b-jet} and $n_{W->qq}$, and with slightly different selection requirements:
 - {1,2+}B_OW: mainly single t' production
 - 1B_1W, 2+B_{1,2,3+}W: mainly pair production
- Isolated muon with P_T^{μ} >40GeV and $|\eta|<2.1$, vetoes on extra leptons.
- $H_{\rm T}$ is used as discriminating variable and a fit is performed to 6 subsamples together.

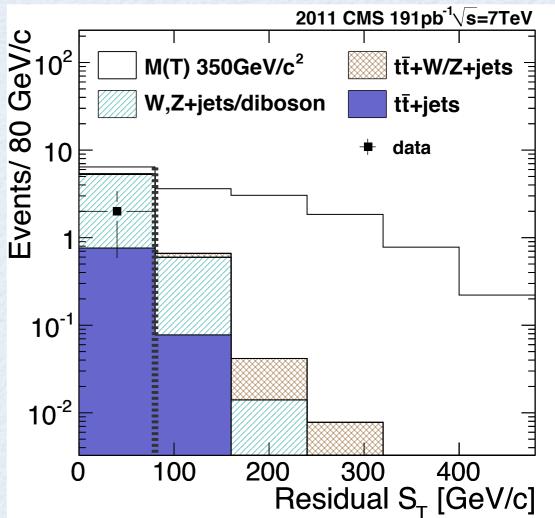


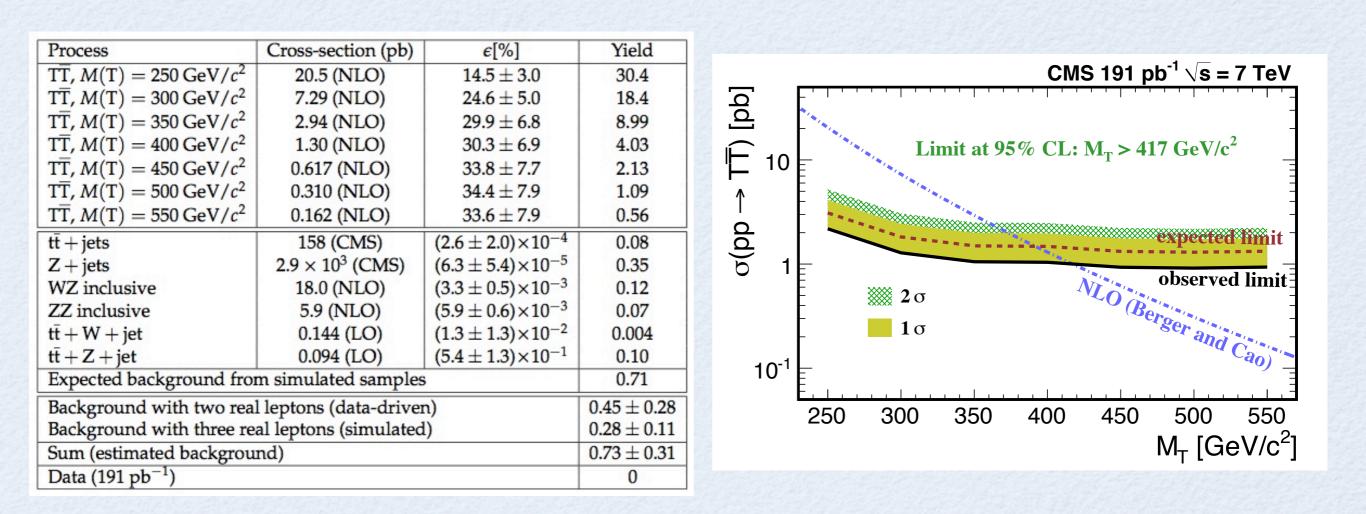
Results presented in the (A, m_{q4}) plane, where mq4 is the degenerate mass of the quarks, $A=|V_{tb}|^2$.


$$CKM4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{A} & \sqrt{1-A} \\ 0 & 0 & \sqrt{1-A} & \sqrt{A} \end{pmatrix}$$

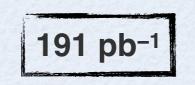
Using CLs, obtained 95% CL limit for minimal offdiagonal mixing (A≈1): m_t'=m_b' > 490GeV

PAS EXO-11-054


4G INCLUSIVE RESULTS


PAS EXO-11-005

- Vector-like quarks from composite Higgs models, little Higgs, extra dimensions, etc. can have FCNC decays.
- If m(H)>m(T)-m(t), the dominant (only) decay channel can be T->tZ.
- Complex final state with low backgrounds.
 - pp -> TT -> tZtZ -> bW bW ZZ
 - P_T^e >20 GeV, P_T^{μ} >15 GeV, well-measured, isolated (within cone ΔR =0.3)
 - One leptonic Z: OSSF leptons, 60 < |m_{II}| < 120 GeV
 - At least one additional lepton, and 2+ jets
 - residual S_T = ΣE_T(jets beyond the hardest two, leptons beyond the hardest two) > 80 GeV



LIMITS ON FCNC T PAS EXO-11-005

- Estimated background: 0.73 events. No observed events.
- Bayesian upper limits computed with flat prior and assuming B(T->tZ) = 1:
 - m(T) > 417 GeV at 95% CL

The results have just been <u>updated</u> to 1.14 fb⁻¹, and the limit is now m(T)>475 GeV.

TOP PARTNERS

arXiv:1109.4725

NI(onto)

•	A	word	on	exotic	top	partners	that	decay -	T->†A ₀ .
---	---	------	----	--------	-----	----------	------	---------	----------------------

- A_0 is a stable, neutral scalar; hence E_T^{miss} . 0
- In most models, T is quark-like ($Q=\frac{2}{3}$, spin= $\frac{1}{2}$, produced in • qluon-fusion & qq annihilation).
- Ex: Little Higgs with T-parity conservation, UED models with KK parity, stops decaying to t & neutralino.
- Exactly one electron(muon) with $P_T>25(20)$ GeV. Veto on extra leptons with P_T >15 GeV, on isolated tracks with P_T >12 GeV.
- At least 4 jets with $P_T>25$ GeV.
- E_T^{miss}>100 GeV, m_T>150 GeV.
- Estimated bkg = 101 ± 16 Observed events = 105
- Assuming $B(T \rightarrow tA_0)=100\%$, exclude at 95% CL:

m(T)<420 GeV for $m(A_0)<10$ GeV.

330<m(T)<390 GeV for m(A₀)<140 GeV.

N(evts)
62 ± 15
33.1 ± 3.8
1.2 ± 1.2
3.5 ± 0.8
0.9 ± 0.3
0.9 ± 0.2
101 ± 16
105

Course

TOP QUARK CHARGE

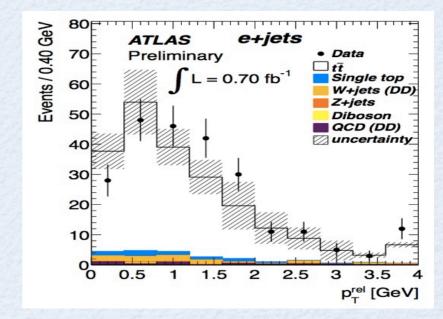
- "Top" quark could be an exotic quark with Q=-4/3.
- Measurement of top quark charge in high-purity tt sample.
 - Candidate semi-leptonic tt events chosen with the same criteria as ATLAS tt charge asymmetry note, ATLAS-CONF-2011-106.
 - electron events: PT^e>25 GeV, ET^{miss}>35 GeV, mT^W>25 GeV
 - muon events: P_T^{μ} >20 GeV, E_T^{miss} >20 GeV, E_T^{miss} + m_T^{W} >60 GeV
 - 4+ jets with P_T^{j} >20 GeV, at least one of which is b-tagged
- Two techniques:
 - Track charge weighting: Use correlation between charge of b-quark and the charges of tracks in the b-jet. Require a 2nd b-jet in event. (About 2200 events with 90% tt purity).
 - Soft lepton: charge of lepton from semileptonic B-hadron decays. Require a muon with P_T >4GeV that is within ΔR =0.4 cone of a jet. (About 1700 events with 80% tt purity).

CHARGE DETERMINATION

NEW

ATLAS-CONF-2011-141

Track charge weighting

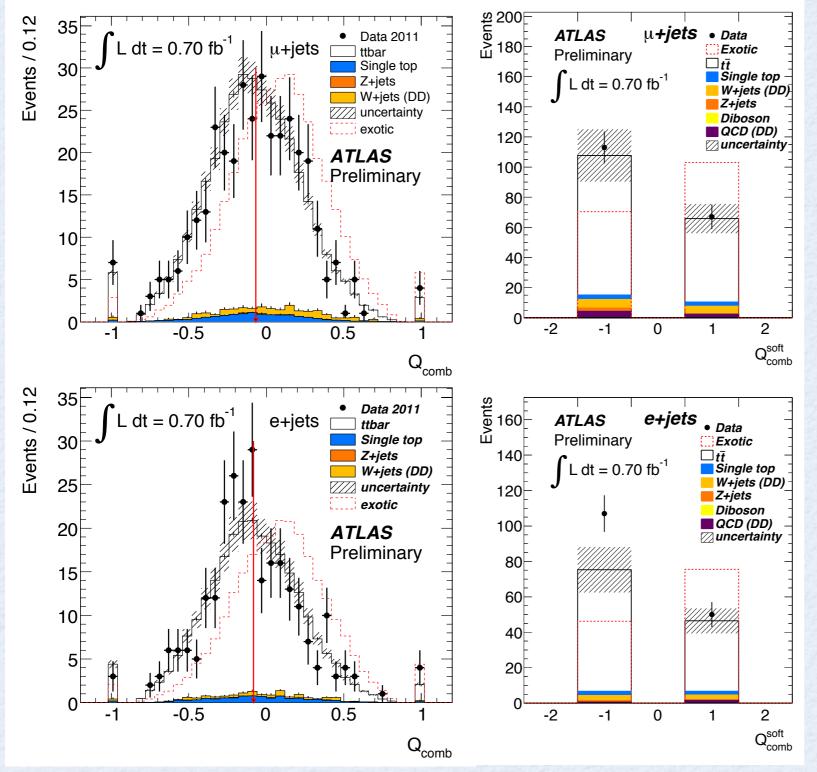

b-jet charge is defined as:

$$Q_{bjet} = \frac{\sum_{i} q_{i} |\vec{j} \cdot \vec{p_{i}}|^{\kappa}}{\sum_{i} |\vec{j} \cdot \vec{p_{i}}|^{\kappa}}$$

- q_i = charge, p_i = momentum of track i, that is within ΔR=0.25 of the b-jet axis, j. κ=0.5
- Up to 10 tracks with P_T>1GeV enter the computation.
- Discriminating variable: $Q_{comb} = Q_{bjet} \times Q_{lepton}$
 - Matching of the lepton and the b-jet is based on checking the invariant mass of lepton and bjet: m(l,b-jet), since this cannot be larger than m_{top}.

Soft muon tag

- b-jet charge is based on the charge of a soft muon identified:
 - A kinematic likelihood fitter determines event topology.
 - Jet with highest likelihood of coming from leptonically decaying top is selected.
 - Search for a μ of $\mathsf{P_T}^{\mathsf{rel}}\!\!\!>\!\!0.8$ GeV in the selected jet.


Discriminating variable: Q_{comb}^{soft} = Q_{softµ} × Q_{lepton}

Exotic Heavy Quarks @ LHC - V. E. Özcan

RESULTS ON EXOTIC CHARGE

Observed charge distribution is in good agreement with SM.

- Mean value of Q_{comb} and Q_{comb}^{soft} is used to define a test statistic.
- Q=-4/3 hypothesis excluded at more than 5σ .

	$< Q_{comb}^{soft} >$				
SM	-0.234 ± 0.011				
Exotic	$+0.209 \pm 0.011$				
Measured	-0.31 ± 0.07				
	<q<sub>comb></q<sub>				
SM	-0.082 ± 0.020				
Exotic	$+0.083 \pm 0.020$				
Measured	-0.082 ± 0.015				
NEW 0.70 fb 1					

 $U_{1}/U_{1}TD^{-1}$

Exotic Heavy Quarks @ LHC - V. E. Özcan

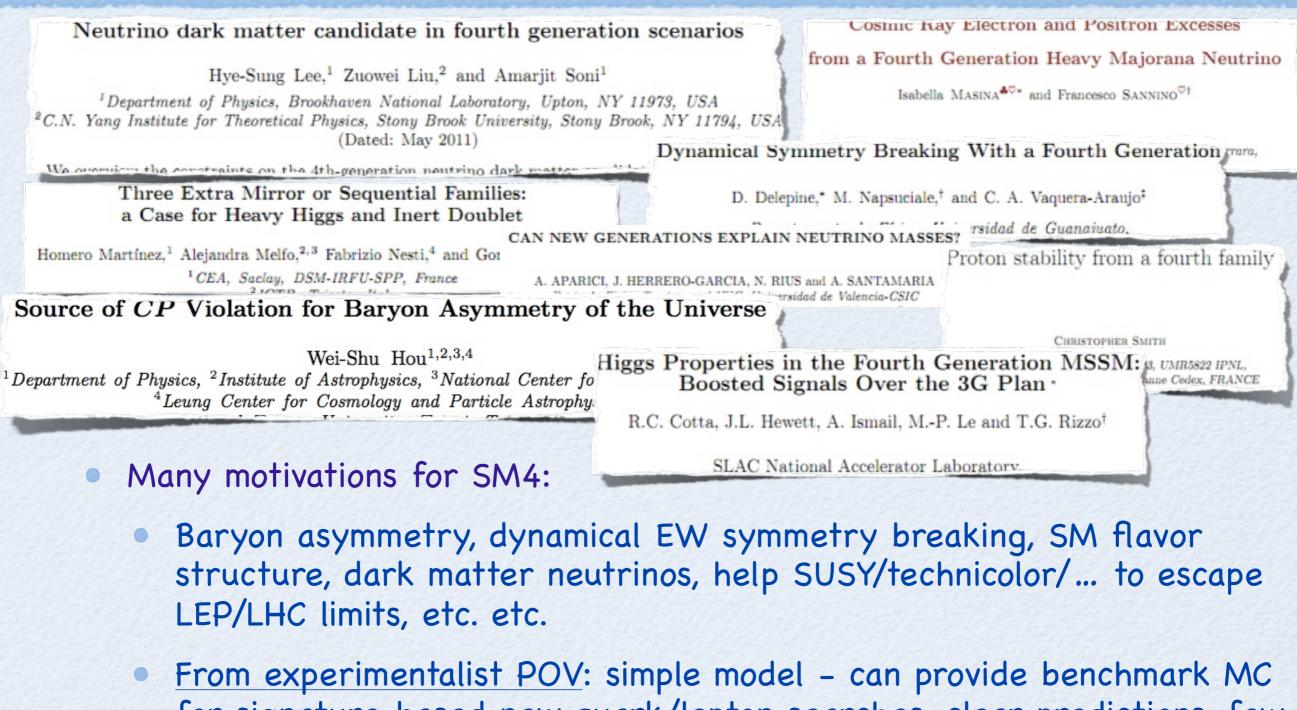
CONCLUSIONS

- ATLAS and CMS is searching for new heavy quarks in multiple decay channels.
 - Most stringent constraints so far on 4th generation quarks (assuming dominant mixing with 3rd gen.).
 - M(t')>450 GeV ; M(b')>495 GeV ; M(q₄)>490 GeV
 - Limits on (m_T, m_{AO}) plane for top-partners decaying to top+ E_T^{miss} :
 - $m(T) \ge 400 \text{ GeV}$ for $m(A_0) < 100 \text{ GeV}$.
 - A "top" quark with exotic charge of Q=-4/3 has been excluded at more than 5σ .
- Some of these analyses are still with 2010 data, updates are in the pipeline, and are likely to improve the search range significantly.
 - With 5fb⁻¹, the 4th gen. limits can be pushed by another 50-80GeV.

BACKUPS

SM4, WHY NOT?

- Number of generations not set in SM.
 - On the muon: "Who ordered that?" I.I. Rabi
 - But then we got two full generations of fermions. So the real question: "Who decided not to order more?"
- But why was it so unpopular for a while?
 - Pre-neutrino oscillation days: Neutrinos were massless & LEP found N(neutrino lighter than $m_Z/2$)=3.


An extra generation of ordinary fermions is excluded at the 99.95% CL on the basis of the S parameter alone, corresponding to $N_F = 2.92 \pm 0.27$ for the number of families. This result assumes that there are no new contributions to T or U and therefore that any new families are degenerate. In principle this restriction can be

From PDG 2004

 PDG thought EW oblique parameters were inconsistent with extra generations – as the calculation assumed a fully "degenerate" 4th generation. (In the meantime, there were papers showing the full EW fit allowed a non-degenerate 4th generation!)

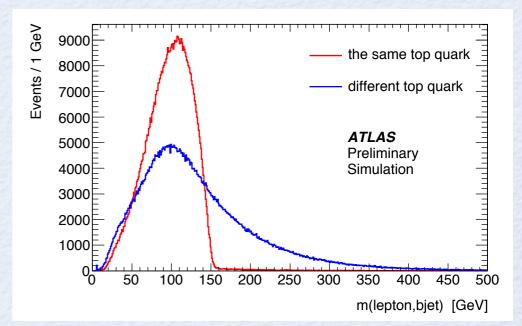
WHY SM4?

for signature-based new quark/lepton searches, clear predictions, few free parameters, discover or reject at LHC...

Exotic Heavy Quarks @ LHC - V. E. Özcan

Upcoming 3rd WS in Istanbul, October 23-25

TRACK CHARGE WEIGHTING

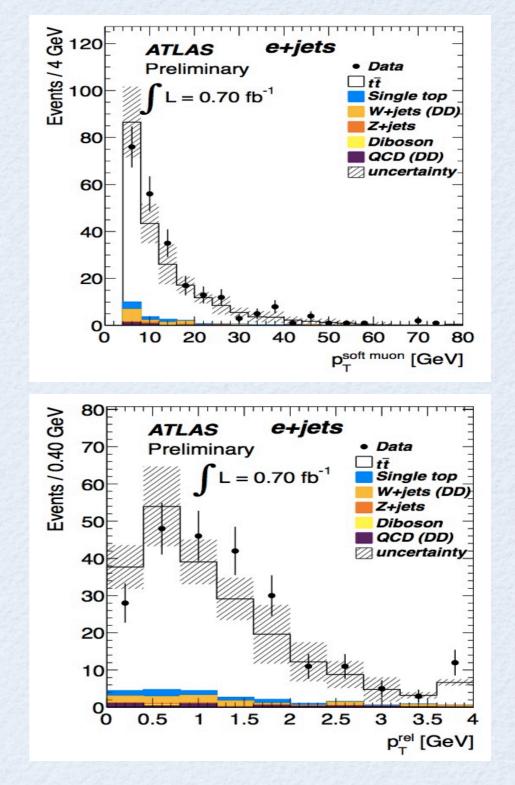


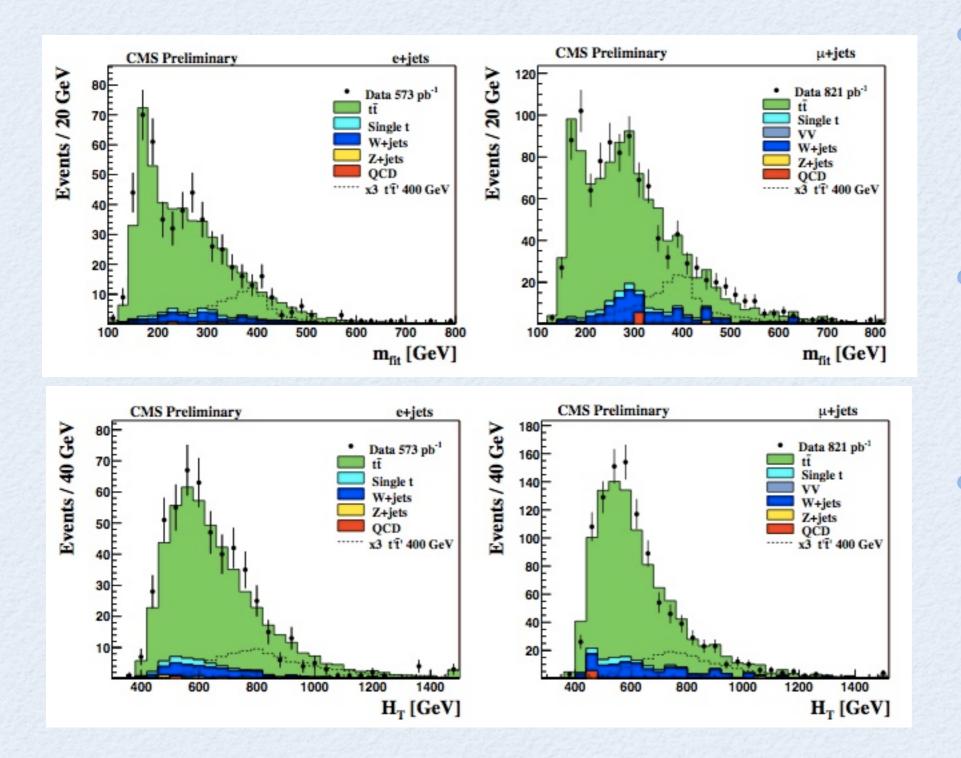
ATLAS-COM-CONF-2011-163

• b-jet charge is defined as:

$$Q_{bjet} = \frac{\sum_{i} q_i |\vec{j} \cdot \vec{p}_i|^{\kappa}}{\sum_{i} |\vec{j} \cdot \vec{p}_i|^{\kappa}}$$

- q_i = charge, p_i = momentum of track i, that is within ΔR=0.25 of the b-jet axis, j. κ=0.5
- Up to 10 tracks with P_T >1GeV enter the computation.
- Discriminating variable: Q_{comb} = Q_{bjet} × Q_{lepton}
 - To match lepton and b-jet, look at invariant mass of lepton and b-jet: m(l,b-jet)
 - Take only those events in which m(l,b-jet)>155GeV for one b-jet and m(l,b-jet)<155GeV for the other b-jet.




SOFT MUON CHARGE **ATLAS-COM-CONF-2011-163**

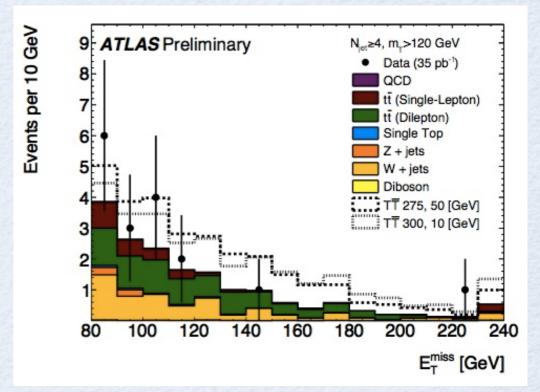
- A kinematic likelihood fitter determines event topology.
- Jet with highest likelihood of coming from leptonically decaying top is selected.
- Search for a μ of $P_T^{rel} > 0.8$ GeV in the selected jet.
- Then define discriminating variable: $Q_{comb}^{soft} = Q_{soft\mu} \times Q_{lepton}$

Lepton + Jets Channel FITTING FOR M(T')PAS EXO-11-051

Take four-jet combinations out of the hardest 5 jets. (Slightly different assignment for µ channel.)

- Use W mass contraints and the fact that the 2 reco t' masses should be equal.
- Perform kinematic fit minimizing the χ^2 computed from the measured momenta of all final-state particles and their resolutions.

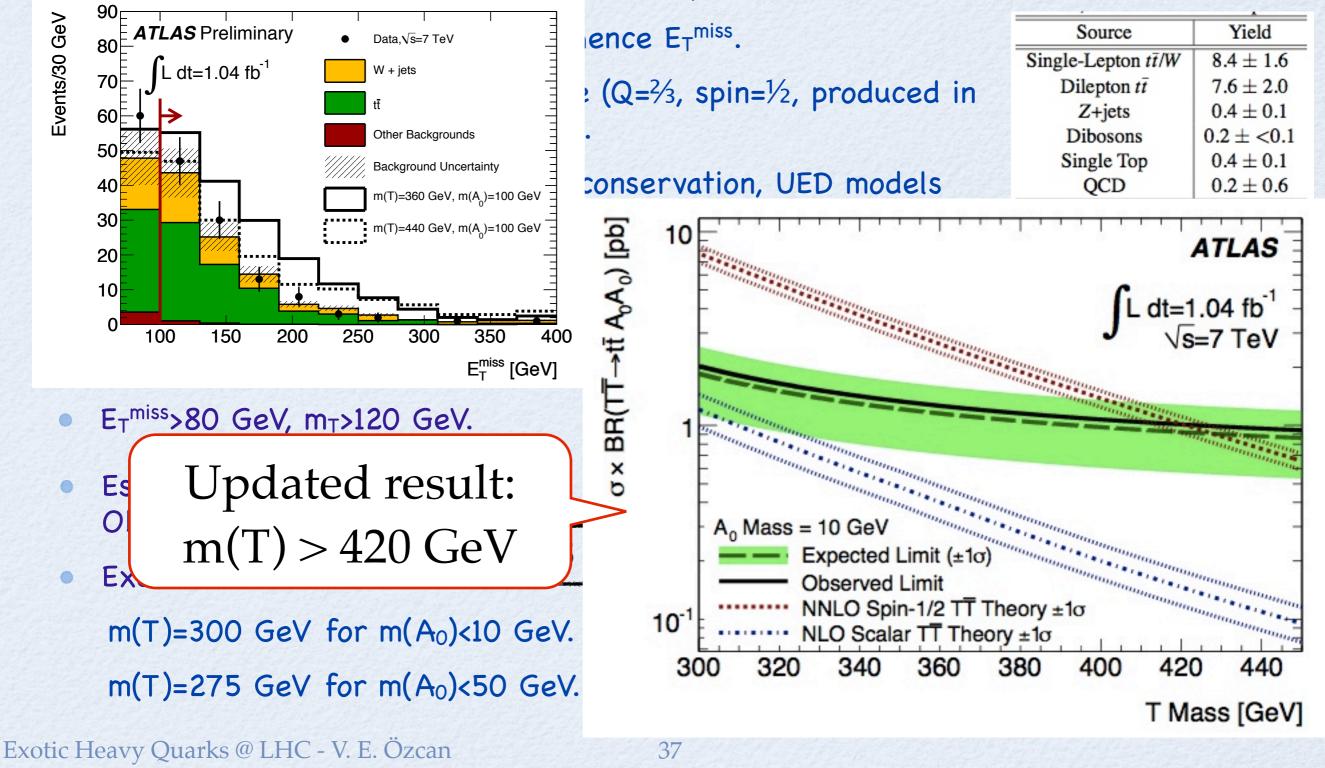
Exotic Heavy Quarks @ LHC - V. E. Özcan


TOP PARTNERS (OLD) ATLAS-CONF-2011-036

- A word on exotic top partners that decay T->tA₀.
 - A₀ is a stable, neutral scalar; hence E_T^{miss}.
 - In most models, T is quark-like (Q=²/₃, spin=¹/₂, produced in gluon-fusion & qq annihilation).
 - Ex: Little Higgs with T-parity conservation, UED models with KK parity, stops decaying to t & neutralino.
- Exactly one lepton with P_T>20 GeV. Veto on (loose) leptons with P_T>15 GeV, on isolated tracks with P_T>12 GeV.
- At least 4 jets with PT>20 GeV.
- E_T^{miss}>80 GeV, m_T>120 GeV.
- Estimated bkg = 17.2 Observed events = 17

 Exclude at 95% CL: m(T)=300 GeV for m(A₀)<10 GeV. m(T)=275 GeV for m(A₀)<50 GeV.

Yield Source Single-Lepton tt/W 8.4 ± 1.6 Dilepton tt 7.6 ± 2.0 Z+jets 0.4 ± 0.1 Dibosons $0.2 \pm < 0.1$ Single Top 0.4 ± 0.1 0.2 ± 0.6 OCD Total Background 17.2 ± 2.6 17 Data



Exotic Heavy Quarks @ LHC - V. E. Özcan

TOP PARTNERS (OLD) ATLAS-CONF-2011-036

• A word on exotic top partners that decay T->tA_0.

