

V + HEAVY FLAVOR (THEORY)

Rikkert Frederix University of Zurich

4th international workshop on Top Quark Physics, Sant Feliu de Guixols, Spain, Sep. 25-30, 2011

BACKGROUND TO TOPS

- The main backgrounds to top quark are W-bosons plus heavy jets
- The (ir)reducible backgrounds to top pair and single top production involve vector boson(s) plus heavy jets events

OUTLINE

- The irreducible "background" to top pair production: WWbb at NLO
- # 4 & 5 flavor scheme for W + heavy jets
- Wbb (and Zbb) matched to the parton shower

ON-SHELL TOP QUARKS

Until recently all (exclusive) calculations beyond LO used the narrow width approximation for the top quark pair production: tops are assumed to be stable

OFF-SHELL EFFECTS

- * However, top quarks decay, so the better LO diagram is this one
- In fact, there are quite a few more diagrams of the same order...

NOT ONLY TOP PAIRS...

- Gauge invariance guides us to include also single-resonant and non-resonant production
- * There is interference between the diagrams above

WWBB AT NLO

- Recently, the full NLO computations to the WWbb process were calculated by two independent groups *Denner et al.; Bevilacqua et al.*
- Consistent description of top pair production and irreducible backgrounds
- Particularly important when cuts require tops to be off-shell
- Matrix element-level calculation; matching to the parton shower not (yet) available

NO CONSTANT 'K-FACTOR'

- Corrections are small for most observables
- Compared the LO WWbb production, the NLO corrections are not an overall change in normalization

Denner et al.; Bevilacqua et al.

Rikkert Frederix, Sep 26, 2011

MASSLESS B-QUARKS

Top pair production

Looks like single top production (Wt-channel, 4-flavor scheme) but it isn't really...

- * However, b quarks are considered to be massless: need to put cuts on them to make this process finite
 - This calculation cannot be used to predict the rate when one b-quark is too far forward/soft to be observed

4- & 5-FLAVOR SCHEMES

5 flavor scheme	4 flavor scheme				
massless b	massive b				
PDF includes initial state b quarks	No b quarks in PDF				
Log[m _b /µ _F] resummed in PDF	Finite terms correctly included				
Simpler calculation	More involved prediction				
$\begin{array}{c} q \\ q \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} q \\ q \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
Descriptions are equivalent when including all orders in perturbation theory					

W-BOSON + B JETS

- For single top it is straight-forward to understand the two prescriptions
- It is more involved when trying to describe W-boson plus b-jets
- * Each of the following need a separate description, e.g.
 - W+1 jets with 1 b tag (inclusive or exclusive)
 - W+2 jets with 1 b tag (inclusive or exclusive)
 - W+2 jets with 2 b tags (inclusive or exclusive)
 - W+bb-jet (inclusive or exclusive) [bb-jet is a jet containing two b-quarks]

4-FLAVOR SCHEME

- 1. W+1 jets with 1 b tag (inclusive or exclusive)
- 2. W+2 jets with 1 b tag (inclusive or exclusive)
- 3. W+2 jets with 2 b tags (inclusive or exclusive)
- 4. W+bb-jet (inclusive or exclusive)
- ** All of them are described by this process in the 4-flavor scheme
 - # finite process (IR singularities regularized by the bottom mass)
 - * known at NLO (even matched to parton shower)
- * "W+2jets with 1 b tag (inclusive)" is also (better?) described by:
 - Only known at LO, therefore already included in NLO description of the diagram above

5-FLAVOR SCHEME

- When requiring 2 b tags or a bb-jet, the same diagrams as in the 4-flavor scheme are appropriate here as well (in principle with a massless b-quark)
- When requiring only 1 b tag, there is a better description with initial state b-quarks
 - Smaller uncertainties compared to 4-flavor scheme for observables that are not sensitive to very soft/forward b quarks

** NLO study to combine the two approaches in one consistent description for W+1,2 jets with (at least) 1 b tag [*Caola et al. arXiv:1107.3714*]

5-FLAVOR SCHEME

- When requiring 2 b tags or a bb-jet, the same diagrams as in the 4-flavor scheme are appropriate here as well (in principle with a massless b-quark)
- When requiring only 1 b tag, there is a better description with initial state b-quarks
 - Smaller uncertainties compared to 4-flavor scheme for observables that are not sensitive to very soft/forward b quarks

- ** NLO study to combine the two approaches in one consistent description for W+1,2 jets with (at least) 1 b tag [*Caola et al. arXiv:1107.3714*]
- # 4-flavor scheme calculation is simpler in the sense that "one fits all"

** NLO matched to parton shower in POWHEG and aMC@NLO Rikkert Frederix, Sep 26, 2011

POWHEG BOX

- Framework to convert any existing NLO computation to a matched NLOwPS prediction
- % Can match to any (pT-ordered) parton shower
- Implementation of a new process requires some manual intervention

* Wbb process readily available [Oleari & Reina, arXiv:1105.4488]

[Nason, Oleari, Alioli, Re, ...]

PERTURBATIVE TUNING

- Using the default way of incorporating the Wbb in POWHEG leads to an enormous enhancement of the W-pT distribution compared to fixed order computations
- Due to radiation from the bottom quarks that is exponentiated in the Sudakov factor

- * Need to introduce a damping function that removes this radiation from the exponent
 - * can be tuned to agree with fixed order NLO

POWHEG RESULTS FOR WBE

With the tuning, corrections from the parton shower are small Rikkert Frederix, Sep 26, 2011

AMC@NLO

[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli]

- Completely automatic tool to generate events at NLO accuracy matched to a parton shower using the MC@NLO formalism
- Suild on the MadGraph framework: *"If you know how to run MadGraph, you know how to run aMC@NLO as well"*
- Matching implemented for Herwig6, pythia6 and herwig++

MadGraph FKS AMC@NLO One-loop MC@NLO

Website: http://amcatnlo.cern.ch

- Validated NLO event samples for Wbb and Zbb available for download (to be showered with herwig6)
- Single phase-space point check (for virtual) available later this week

Will become publicly available soon

$PP \rightarrow WBB/ZBB$ WITH AMC@NLO

- Background to top pair production and pp → HW/HZ, H → bb
 4 Flavor scheme calculations
 - Massive b quarks
 - No initial state b quarks
 - Born is finite: no generation cuts are needed

- At LO, Wbb is purely qq induced, while Zbb has also contributions from gg initial states
- Cross sections for Zbb and Wbb are similar at LHC 7 TeV

[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli, arXiv:1106.6019]

	Cross section (pb)						
	Tevatron $\sqrt{s} = 1.96$ TeV			LHC $\sqrt{s} = 7$ TeV			
	LO	NLO	K factor	LO	NLO	K factor	
$\ell u b \overline{b}$	4.63	8.04	1.74	19.4	38.9	2.01	
$\ell^+\ell^-b\overline{b}$	0.860	1.509	1.75	9.66	16.1	1.67	

$PP \rightarrow WBB/ZBB$

[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli, arXiv:1106.6019]

- In Wbb, ~20% of b-jets are bb-jets; for Zbb only ~6%
 - ≫ Jets defined with anti-k_T and R=0.5, with $p_T(j)>20$ GeV and $|\eta|<2.5$
- * Lower panels show the ratio of aMC@NLO with LO (crosses), NLO (solid) and LOwPS (dotted)

% NLO and aMC@NLO very similar and consistent Rikkert Frederix, Sep 26, 2011

$PP \rightarrow WBB/ZBB$

[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli, arXiv:1106.6019]

b-jet mass

Distance between B-mesons (no cuts)

For some observables NLO effects are large and/or parton showering has large effects

CONCLUSIONS

- NLO computation to WWbb can be used to describe (irreducible)
 background to top pair production consistently with signal, but not as a
 description of top pair, single top and non-resonant contributions as a
 background to another process (e.g. gg → H → W⁺W⁻)
 - * Need this process with massive b quarks: consistent description of top pair and Wt-associated predictions
 - * Need this process matched to the parton shower
- For W+jets+b-tags two descriptions exist (4 or 5 flavor schemes) that are equivalent when including all orders in perturbation theory
 - # 4 flavor scheme description simpler for most observables; when requiring only 1 b tag, 5 flavor scheme has smaller uncertainty when inclusive to very soft/forward b-quarks
 - ** NLO Wbb has been matched to the parton shower using POWHEG and aMC@NLO (which has also Zbb)