

Top-anti-top cross section measurements in the dilepton channel from LHC

Jo Cole On behalf of the CMS and ATLAS Collaborations 26th September 2011 TOP 2011 – Session VI

Overview

- Measurement of top-anti-top production cross section
 - Useful in its own right (QCD & EWK physics)
 - ♦ Sensitivity to new physics
 - Crucial background for BSM searches
- Inclusive production cross section measurement
 for the ee/µµ/eµ decay channels
 - ♦ CMS PAS TOP-11-005
 - ♦ ATLAS-CONF-2011-100
- $\diamond\,$ Inclusive production cross section measurement for the $\mu\tau$ decay channel
 - ♦ CMS PAS TOP-11-006
 - ♦ ATLAS-CONF-2011-119

New for 2011: High pile-up (~6 per event); increased statistics

- ♦ CMS: $L = 1.1 \text{ fb}^{-1}$
- \Rightarrow ATLAS: $\mathcal{L} = 0.7 \text{ fb}^{-1}$
- ee, eμ, μμ

 \diamond Branching ratio: 6.45 ± 0.11%

- Experimental signature
 - ♦ Two high-p_T leptons
 - ♦ 2 jets
 - Without b-tagging (ATLAS)
 - With b-tagging (CMS & ATLAS)
 - ♦ Missing E_T

 $m_{top} = 172.5 \text{ GeV/c}^2$

♦ATLAS:

♦MC@NLO using CTEQ6.6 PDF set

Normalized to HATHOR prediction (approx. NNLO)

 $\sigma_{t\bar{t}} = 165^{+11}_{-16}$ pb

♦CMS:

◇MADGRAPH (v4.4.12) + PYTHIA (v6.422)
◇TAUOLA used for τ decays
◇Normalized to MCFM prediction (NLO)

$$\sigma_{t\bar{t}} = 158^{+23}_{-24} \, \mathbf{pb}$$

Lepton Identification

TOP 2011: LHC dilepton results

26th September 2011

6

26th September 2011

Missing Transverse Energy

- ♦ Reconstruction
 - ATLAS: Using jets, plus electrons, muons and any additional cal clusters
 - ♦ CMS: Using Pflow objects
- Selection only applied for ee & μμ
 - Suppress multijet and Drell-Yan backgrounds

Estimated using the Matrix method (data-driven estimate)

Brune Single Top & Diboson Production

- These background sources estimated purely from MC
- \diamond CMS:
 - Single-top: Generated using POWHEG. Normalized to NLO+NNLL cross section prediction. tW channel generated using the diagram-removal scheme
 - Diboson: Generated using PYTHIA. Normalized to NLO MCFM predictions
- \diamond ATLAS:
 - Single-top: Generated using MC@NLO. tW channel generated using the diagram-removal scheme
 - Diboson: Generated using ALPGEN. Normalized to NLO MCFM predictions

Systematic uncertainties

[9] CMS Collaboration, JHEP 1107 (2011) 049, arXiv:1105.5661

CMS

Source	ee	ии	eu
Lepton efficiencies	3.0	1.6	2.3
Lepton selection model	4.0	4.0	4.0
Jet and E_T energy scale	1.9	1.7	1.9
B-tagging	5.0	5.0	5.0
Pileup	4.0	4.0	4.0
Branching ratio	1.7	1.7	1.7
Decay model (from [9])	2.0	2.0	2.0
Event Q^2 scale (from [9])	2.3	2.3	1.7
Top quark mass (from [9])	2.6	2.6	1.5
Jet and E_T model (from [9])	3.2	3.2	0.4
Shower model (from [9])	0.7	0.7	0.7
Total Systematic	10.0	9.6	8.8
Luminosity	4.5	4.5	4.5

Z+jets background estimate uncertainty 50%
 W+jets background estimate uncertainty 50%
 difference between data and MC
 Single top, VV and Z -> ττ 30%

Total systematic: 9.5 – 11.3%

ATLAS

			Continued	1
ee	μμ	eμ	Combined	
$\Delta \sigma / \sigma [\%]$	$\Delta \sigma / \sigma [\%]$	$\Delta \sigma / \sigma [\%]$	$\Delta \sigma / \sigma [\%]$	
-9.3/9.8	-6.6 / 6.8	-4.1/4.2	-3.3/3.3	
-4.0/4.7	-3.7 / 4.3	-4.3/4.7	-4.2/4.6	
-4.2/4.9	-2.8/3.2	-1.9/2.1	-1.5/1.6	
0.0/0.9	0.0/0.5	-0.3/0.3	-0.4/0.0	
0.0/0.6	-0.5/0.8	0.0/0.5	-0.4/0.3	
-5.5/6.6	-1.2/2.7	-3.1/3.4	-2.0/2.7	
-10.0 / 10.6	-3.8/7.6	-3.7 / 4.5	-5.9/5.3	D
-0.6/0.8	-3.1/3.6	-0.6/0.7	-0.4/0.3	
0.0 / 0.0	0.0/0.0	0.0/0.0	0.0 / 0.0	
0.0 / 0.0	-0.4 / 0.4	0.0/0.0	0.0 / 0.0	
-1.6/1.6	-0.4 / 0.4	-3.2/3.2	-2.0/1.9	
-4.3/5.3	0.0/0.0	-2.9/3.2	-2.1/2.3	
-4.7/5.8	-0.4/0.5	-2.9/3.2	-2.3/2.4	
-7.1/0.6	-0.8 / 3.6	-0.5/2.4	-2.4/2.5	
-13.6/0.6	-0.7 / 4.3	-2.4/0.5	-1.3/1.4	
-2.4/2.8	-1.7/2.2	-2.4 / 2.7	-2.3/2.5	
-1.0/1.1	-0.8 / 1.7	0.0/0.0	-0.5/0.6	
-0.6/1.3	-0.5 / 1.5	0.0/0.0	-0.5/0.5	
-0.6/1.1	-0.7 / 1.5	-0.7 / 1.2	-1.0/1.3	
-1.4/1.3	-1.7 / 1.8	-2.1/2.1	-1.9/1.9	
-20 /18	-7.3/13	-9.2/11	-9.3 / 10]
-22 / 20	-9.9/15	-10 / 12	-9.8 / 11]
	$\begin{array}{c} ee \\ \Delta\sigma/\sigma[\%] \\ \hline -9.3/9.8 \\ -4.0/4.7 \\ -4.2/4.9 \\ 0.0/0.9 \\ 0.0/0.6 \\ \hline -5.5/6.6 \\ -10.0/10.6 \\ -0.6/0.8 \\ 0.0/0.0 \\ 0.0/0.0 \\ 0.0/0.0 \\ \hline -1.6/1.6 \\ -4.3/5.3 \\ -4.7/5.8 \\ -7.1/0.6 \\ -13.6/0.6 \\ -2.4/2.8 \\ -1.0/1.1 \\ -0.6/1.3 \\ -0.6/1.1 \\ -1.4/1.3 \\ \hline -20/18 \\ -22/20 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	eeμμeμ $\Delta \sigma / \sigma [\%]$ $\Delta \sigma / \sigma [\%]$ $\Delta \sigma / \sigma [\%]$ -9.3/9.8-6.6/6.8-4.1/4.2-4.0/4.7-3.7/4.3-4.3/4.7-4.2/4.9-2.8/3.2-1.9/2.10.0/0.90.0/0.5-0.3/0.30.0/0.6-0.5/0.80.0/0.5-5.5/6.6-1.2/2.7-3.1/3.4-10.0/10.6-3.8/7.6-3.7/4.5-0.6/0.8-3.1/3.6-0.6/0.70.0/0.00.0/0.00.0/0.00.0/0.0-0.4/0.4-3.2/3.2-4.3/5.30.0/0.0-2.9/3.2-7.1/0.6-0.8/3.6-0.5/2.4-13.6/0.6-0.7/4.3-2.4/0.5-2.4/2.8-1.7/2.2-2.4/2.7-1.0/1.1-0.8/1.70.0/0.0-0.6/1.3-0.5/1.50.0/0.0-0.6/1.3-0.5/1.50.0/0.0-0.6/1.1-0.7/1.5-0.7/1.2-1.4/1.3-1.7/1.8-2.1/2.1-20/18-7.3/13-9.2/11-22/20-9.9/15-10/12	eeμμeμCombined $\Delta \sigma / \sigma [\%]$ -9.3 / 9.8-6.6 / 6.8-4.1 / 4.2-3.3 / 3.3-4.0 / 4.7-3.7 / 4.3-4.3 / 4.7-4.2 / 4.6-4.2 / 4.9-2.8 / 3.2-1.9 / 2.1-1.5 / 1.60.0 / 0.90.0 / 0.5-0.3 / 0.3-0.4 / 0.00.0 / 0.6-0.5 / 0.80.0 / 0.5-0.4 / 0.3-5.5 / 6.6-1.2 / 2.7-3.1 / 3.4-2.6 / 2.7-10.0 / 10.6-3.8 / 7.6-3.7 / 4.5-5.9 / 5.3-0.6 / 0.8-3.1 / 3.6-0.6 / 0.7-0.4 / 0.30.0 / 0.00.0 / 0.00.0 / 0.00.0 / 0.00.0 / 0.0-0.4 / 0.40.0 / 0.00.0 / 0.00.0 / 0.0-0.4 / 0.4-3.2 / 3.2-2.0 / 1.9-4.3 / 5.30.0 / 0.0-2.9 / 3.2-2.1 / 2.3-4.7 / 5.8-0.4 / 0.5-2.9 / 3.2-2.3 / 2.4-7.1 / 0.6-0.8 / 3.6-0.5 / 2.4-2.4 / 2.5-13.6 / 0.6-0.7 / 4.3-2.4 / 0.5-1.3 / 1.4-2.4 / 2.8-1.7 / 2.2-2.4 / 2.7-2.3 / 2.5-1.0 / 1.1-0.8 / 1.70.0 / 0.0-0.5 / 0.6-0.6 / 1.3-0.5 / 1.50.0 / 0.0-0.5 / 0.5-0.6 / 1.1-0.7 / 1.5-0.7 / 1.2-1.0 / 1.3-1.4 / 1.3-1.7 / 1.8-2.1 / 2.1-1.9 / 1.9-20 / 18-7.3 / 13-9.2 / 11-9.3 / 10-22 / 20-9.9 / 15-10 / 12-9.8 / 11

Total systematic: 7.3 – 20%

26th September 2011

Brune Cross Section determination

- ♦ ATLAS
 - Likelihood fit of number of observed events in each channel, luminosity and systematics
 - $\diamond \sigma_{top}$ free parameter of fit extracted from profile likelihood ratio
 - Fit yields cross sections for individual channels and combined value
- \diamond CMS
 - ♦ Cross section extracted using: $\sigma_{t\bar{t}} = \sigma_{theory}$.

$$\cdot \frac{IV_{signal}}{SF \cdot N_{exp}}$$

λ7

- $\circ \sigma_{\text{theory}} = 157.5 \text{ pb; } N_{\text{exp}} = \text{number of expected events}$
- \diamond N_{signal} = number of observed signal events
- \diamond SF = scale factor (accounts for differences between data & MC)
- ♦ Combined cross section determined using BLUE method★

*Lyons, Gibaut, Clifford NIM A270 (1988) 110

CMS Preliminary:

ee channel 189.9 ± 8.9 ± 21.4 ± 8.5 pb

 $\mu\mu$ channel 165.8 ± 7.4 ± 18.5 ± 7.5 pb

 $e\mu$ channel 169.9 ± 4.4 ± 16.2 ± 7.6 pb

CMS:
$$\sigma_{t\bar{t}} = 169.9 \pm 3.9(stat) \pm 16.3(syst) \pm 7.6(lumi)pb$$

ATLAS: $\sigma_{t\bar{t}} = 177 \pm 6(stat)^{+17}_{-14}(syst)^{+8}_{-7}(lumi)pb$

τμ cross section

- $\diamond\,$ First measurement of top-anti-top cross section with τ in the final state
- New physics: Charged Higgs with m_H < m_{top}
 - \diamond Possible anomalous τ production
- ♦ Branching ratio ~2.4%
- Experimental signature:
 - \diamond Isolated high p_T muon

 - \diamond Hadronically-decaying τ
 - ♦ Missing E_T

- ♦ Tau decays:
 - \diamond One or three charged mesons (mainly π^{\pm})
 - \diamond Up to two $\pi^{_0}$
- CMS: "Hadron plus strips" algorithm
 - ↔ Analyze jet constituents (jet cone ΔR = 2.8/p_T)

- ♦ If results indicate more than one possible decay channel
 - $\diamond~$ Take the one with lowest E_{τ} sum of jet constituents not associated with τ decay

Brunel UNIVERSITY Identification of τ leptons (II)

- ♦ ATLAS: Two-stage process
 - ♦ Select jets with 1, 2 or 3 tracks associated ($p_T > 1$ GeV/c, leading track $p_T > 4$ GeV/c)
 - \diamond Use BDT to separate e^{\pm} and τ^{\pm}
- Remaining sample = mainly fakes
 - \diamond Use second BDT to identify τ with 1 (τ_1) or 3 (τ_3) tracks
 - Fit two BDT distributions separately with templates

Backgrounds

- Two sources of background: \diamond
 - \uparrow τ -fakes: Data-driven estimate
 - \diamond Non- τ -fakes: Estimated from MC
 - \diamond Drell-Yan ($\tau\tau$, ee, $\mu\mu$), single top, dibosons & top-antitop background
- \Rightarrow **τ**-fake background = **μ** + missing E_τ + ≥ 3 jets
 - \diamond 1 jet mis-identified as a τ -jet
 - \diamond Dominated by W+jets and tt $\rightarrow \mu$ + jets

 \diamond Determine probability for a jet to be mis-identified as a τ -jet using:

Two data samples:

↔QCD multijet (mainly gluon jets) ↔W + ≥ 1 jet (mainly quark jets)

Signal sample is mixture of quark + gluon jets
 Quark jets higher probability of faking τ-jets
 Take average as correction - apply to all jets
 Use difference as systematic uncertainty

Backgrounds (ATLAS)

- \diamond Expect τ and μ to have opposite sign (OS)
 - Exploit same-sign (SS) sample in background estimation
- ♦ Before missing E_T cut QCD multi-jet background dominant
 - Approx. equal in OS & SS samples
 - Subtract SS from OS to remove it
- ♦ Use W + \geq 1 jet sample to estimate background
 - OS sample = mainly light-quark jets (some gluon jets & b-jets)
 - SS sample = significantly higher fraction of gluon jets
- ♦ Gluon component of τ fakes = charge symmetric ➡ same shape
 ♦ Subtract SS from OS will remove it (and b/anti-b contribution)
- Remaining background handled by BDT

Backgrounds (ATLAS) (II)

- τ identification only way to suppress remaining background
 - ♦ Apply BDT
- Build background template based on OS+SS W+jets data sample
- ♦ Signal template from tt → τ+jets and Z →τ⁺τ⁻ MC
- Remaining tt → µe + jets estimated
 using MC added to signal template
- X² fit made to determine normalisations

Results

- ♦ Systematic uncertainties similar to those already presented
- \diamond Uncertainty related to τ identification
 - \diamond CMS: τ fake background 13%; τ identification 7.3%
 - \diamond ATLAS: τ uncertainty 5.8 9.5%

$$\tau_1$$
 136 ± 23(*stat*)⁺¹⁹₋₁₅(*syst*) ± 5(*lumi*)*pb*

$$163 \pm 53(stat)_{-20}^{+23}(syst) \pm 6(lumi)pb$$

ATLAS Combined $\sigma_{t\bar{t}} = 142 \pm 21(stat)^{+20}_{-16}(syst) \pm 5(lumi)pb$

CMS $\sigma_{t\bar{t}} = 148.7 \pm 23.6(stat) \pm 26.0(syst) \pm 8.9(lumi)pb$

HATHOR $\sigma_{t\bar{t}} = 164^{+11}_{-16} pb$

Kidonakis
$$\sigma_{t\bar{t}} = 163^{+7}_{-5}(scale) \pm 9(PDF)pb$$

CMS Preliminary, \s=7 TeV

- Updated measurement of top-anti-top cross section in the dilepton decay channel presented (ee/μμ/eμ)
 - Good agreement between CMS & ATLAS and with theory
 - High pile-up under good control
 - ♦ Slight increase in systematics
- $\diamond\,$ First measurement of top-anti-top cross section in $\mu\tau$ decay channel presented
 - Experimentally challenging
 - Good agreement between expts & theory
- Measurements now limited by systematics
 - Look to reduce these by improved understanding of pileup and b-tagging

BACK-UP SLIDES

Event Yields

CMS

Source	ee	μμ	eμ
Dilepton tt	$427.5 \pm 19.7 \pm 44.5$	$559.3 \pm 22.9 \pm 56.3$	$1487.2 \pm 37.3 \pm 139.2$
VV	$2.6 \pm 1.6 \pm 0.8$	$3.4 \pm 1.9 \pm 1.1$	$6.9 \pm 2.6 \pm 2.2$
Single top - tW	$22.9 \pm 4.8 \pm 7.3$	$28.9 \pm 5.4 \pm 9.2$	$73.4 \pm 8.6 \pm 23.3$
Drell-Yan $\tau\tau$	$6.9 \pm 2.6 \pm 2.2$	$8.8 \pm 3.0 \pm 2.9$	$27.3 \pm 5.2 \pm 8.8$
Drell-Yan ee, µµ	$38.2 \pm 4.3 \pm 19.1$	$50.5 \pm 5.1 \pm 25.2$	-
QCD/W+jets	2.9 ± 4.3 (tot.)	7.6 ± 4.7 (tot.)	30.0 ± 12.0 (tot.)
Total background	73.6 ± 22.2(tot.)	99.1 ± 28.6(tot.)	137.6 ± 29.6(tot.)
Data	589	688	1742

		ee	$\mu\mu$	eμ	b-tag ee	b-tag $\mu\mu$	b-tag eμ
ATLAS	$Z/\gamma^* (\rightarrow ee/\mu\mu)$ +jets	$3.8^{+2.5}_{-1.2}$	14.8 ± 4.7	-	$9.3^{+3.7}_{-1.9}$	$19.1^{+2.4}_{-1.6}$	-
,	$Z/\gamma^* (\rightarrow \tau \tau) + jets$	5.2 ± 2.6	11.2 ± 4.8	43 ± 16	$1.6^{+1.1}_{-0.9}$	$7.0^{+2.8}_{-3.2}$	$9.1^{+3.6}_{-3.7}$
	Fake leptons	3.1 ± 2.2	$0.3^{+0.6}_{-0.3}$	44 ± 24	4.9 ± 3.1	1.0 ± 0.8	19 ± 12
	Single top quarks	6.6 ± 1.2	16.2 ± 2.0	40.9 ± 5.6	$6.8^{+1.3}_{-1.2}$	$15.4^{+2.5}_{-2.4}$	$30.8^{+4.9}_{-4.5}$
	Diboson	5.6 ± 1.0	8.2 ± 1.2	30.9 ± 4.6	2.1 ± 0.8	$2.7^{+0.9}_{-0.6}$	$8.7^{+1.5}_{-1.3}$
	Total bkg.	$24.3^{+5.4}_{-4.7}$	50.8 ± 8.4	158 ± 34	$24.7^{+5.2}_{-4.0}$	$45.2^{+4.6}_{-4.4}$	68 ± 14
	Predicted $t\bar{t}$	135 ± 17	252^{+23}_{-28}	753 ± 61	167^{+21}_{-22}	314_{-38}^{+30}	666^{+62}_{-77}
	Total	159 ± 18	303^{+24}_{-29}	912 ± 70	192 ± 22	359^{+31}_{-38}	734_{-78}^{+63}
	Observed	165	287	962	202	349	823

Event Yields

ATLAS

Before E_T^{miss} cut (data)	W + jet (OS)	W + jet (SS)	Signal	nal MC expectation	
$ au_1$	3180 ± 610	1150 ± 580	672 ± 70	806 ± 20	
$ au_3$	12100 ± 1200	6710 ± 1200	193 ± 50	261 ± 10	
Before <i>b</i> -tag (data)	W + jet (OS)	W + jet (SS)	Signal	MC expectation	
$ au_1$	1840 ± 400	740 ± 380	427 ± 50	477 ± 10	
$ au_3$	7700 ± 810	4610 ± 810	106 ± 30	160 ± 10	
After b -tag (data)	W + jet (OS)	W + jet (SS)	Signal	MC expectation	
τ_1	700 ± 190	360 ± 170	163 ± 30	198 ± 3	
$ au_3$	1930 ± 380	1010 ± 380	62 ± 20	66 ± 2	

	Source	Events (\pm stat. \pm syst.)
CMS	$t\bar{t} \rightarrow WbWb \rightarrow \mu\nu b \ \tau\nu b$	$152.7 \pm 2.8 \pm 16.6$
	au fakes	$163.0 \pm 9.7 \pm 17.3$
	other t t	$12.7 \pm 0.8 \pm 2.6$
	$Z/\gamma^* \rightarrow ee, \mu\mu$	$0.7\pm0.5\pm0.5$
	$Z/\gamma^* \to \tau \tau$	$30.9 \pm 3.6 \pm 5.8$
	Single top	$13.8 \pm 0.7 \pm 2.0$
	VV	$2.4\pm0.2\pm0.3$
	Total expected	$376.4 \pm 10.8 \pm 29.7$
	Data	361

Unel Cross Section Determination

$$\mathcal{L}(\sigma_{\text{sig}}, L, \alpha) = \prod_{i \in \{channel\}} P(N_i^{obs} \mid N_{i,tot}^{exp}(\vec{\alpha})) \times G(L_0 \mid L, \sigma_L) \times \prod_{j \in syst} G_j(0 \mid \alpha_j, 1)$$

- Cross section = free parameter of the fit
- ♦ Vector of α values = systematic uncertainties
 - \Rightarrow Each αj = "nuisance parameter" = ± 1std dev
- P = Poisson distribution expected number of signal & background events
- ♦ G = Gaussian distribution modeling of Luminosity
- ♦ Cross section determined from profile Likelihood ratio:

$$\lambda(\sigma_{sig}) = L(\sigma_{sig}, \hat{\vec{L}}, \hat{\vec{\alpha}}) / L(\hat{\sigma}_{sig}, \hat{\vec{L}}, \hat{\vec{\alpha}})$$

Single circumflex represents maximum likelihood estimate of parameter Double circumflex represents conditional MLE for a given σ_{sig}