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Outline

e Neutrinoless Double-Beta Decay in 7°Ge

e ML-Assisted Simulations
— Electronics Pulse Shape Emulation

e ML-Enhanced Analysis Tools
— Interpretable BDT
— Semi-Autonomous Data Cleaning

— LEGEND Baseline Model with Feature Importance
Supervision
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From Beta Decay to Double Beta Decay

Beta Decay: Double Beta Decay:

n—-p+e+ 1, 2N — 2p + 2e + 21,
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From 2v[3p to Ov[3[3

Double Beta Decay:

2N — 2p + 2e + 21,

Standard Model
Physics

Neutrinoless Double Beta Decay:

2N — 2p + 2¢e°

New Physics!
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Why Neutrinoless Double Beta Decay?

e The discovery of OvBP decay would dramatically revise our
foundational understanding of physics and the cosmos

— Lepton number is not conserved
— The neutrino is a fundamental Majorana particle

— There is a potential path for understanding the matter — antimatter

asymmetry in the cosmos, through leptogenesis
— There is a new mechanism demonstrated for the
generation of mass

e The search for Ovp3P decay is one of the
most compelling and exciting challenges
in all of contemporary physics

e /5Ge-based searches have proven very
successful in searching for this ultra-rare
process
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The OvBp Signal

0.9
2vBPB: Standard /<{Efj§ 08
Model process Ve 07

/ Missing -

W-/I Ve energy
, /

s \\-
!/,
A’ Z # A, Z+2 0.3

0.2

— 2vpp
—— OVBB (B.R.=10%
HPGe resolution

0.5

0.4

Arbitrary Units

T IIII|IIII|IIII|IIII|IIII|IIII|I|II|IIII|IIII

0.1

R '0.121 l 'o.l4l ' '0.16' '
(Summed B Energy)/Q

OvBB: Onlyifvis
Majorana

BB

No missing

W'Il M energy
! W Event topology:

/
A, Z —‘% A, Z+2 * [Bsdon’ttravel far in most detectors

* (P decays are “single-site” events
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Designing for Unambiguous Discovery

e Whatis required for a discovery of OvBf3

Simulated LEGEND-1000 example spectrum for T,,, = 10?8 yrs,
Bl < 10~ cts/keV kg yr, after cuts, from 10 years of data

decay? 6

e Long half-lives mean you need large
exposures. For 3-4 counts of Ovf3f3 at...

cts /keV / (10 tonyr)

2vpBB

— 10?%% years: 100 kg-years

— 10%’ years: 1 ton-year

o
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T,/ =10°
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3-4 events

e Need a good signal-to-background
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ratio to get statistical significance .
< 10° 2vBp events

leak into in QBB‘_*'ZO

e Avery low background event rate

e The best possible energy resolution
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At every stage, OVBPB searches in 7°Ge are designed for unambiguous discovery:
their goal is quasi-background free operation for their full exposure
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Backgrounds and Discovery

e Background-free:

Sensitivity rises linearly with exposure

Background-limited: Sensitivity rises as the square root of exposure

e Qur background goal is “quasi-background-free” operation

— Less than one background count expected in a 40 Region of Interest (ROI) with the full exposure

(FWHM: Full Width at Half Maximum; 2.355 o for a Gaussian peak)
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Building the Ideal Experiment

If | want to see 1 atom decay (and be sure of
what | saw), | need:

* Very high efficiency

* Very low rates of other kinds of events

This is hard, the world is very radioactive!
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Building the lIdeal Experiment

y backgrounds
(mostly external):

a and B backgrounds
(mostly surface events):

several cm

* Use event topology and
location to reduce
backgrounds

* More active materials =
less missing information
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From the Current Generation to the Ton Scale

PRL 125, 252502 (2020)

LEGEND-200: Taking data

LEGEND-1000: Conceptual design
development continuing

arXiv: 2107.11462

Julieta Gruszko | ML for Ge OvBB | A3D3 Seminar

11



——

CEGENUL

LEGEND Approach: Phased Deployment

= S 3 LEGEND-200:

LEGEND-1000:
1000 kg, staged via individual payloads (~340 detectors)

200 kg, upgrade of existing GERDA infrastructure at Gran Sasso
 2.5keV FWHM resolution

* Background goal < 2x10* cts/(keV kg yr)

* First OvBP results released!

|
|
|
|

New infrastructure at LNGS

T i
l i |\

Background goal < 1x10™ cts/(keV kg yr)
Timeline connected to review process

LEGEND-1000 Pre-Conceptual Design Report: arXiv: 2107.11462
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Searching for OvBf in Germanium Detectors

Ovpp Candidate (Single-Site):
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Source = Detector: Detector is made of material enriched in 7°Ge, the
BB decay source isotope

Semiconductor: small band gap leads to millions of electron/hole pairs
at Qgg, and excellent energy resolution

Single-crystal diode under reverse bias: integrated current is
proportional to deposited energy

Pulse shape highly dependent on position: used for multi-site y rejection

LEGEINUA
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Background Rejection in Point Contact Detectors
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External a, B, and
y backgrounds all
create distinctive
pulse shapes,
allowing for highly
efficient Bp decay
event selection
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Germanium Detector Innovation

(Semi)-Coaxial

Large mass (2-3 kg)
Background rejection

using ANN

PPC

IEEE Trans. on
Nuc. Sci., 36, 1,
926-930(1989)

—

* Small mass (< 1 kg)
e Excellent background rejection
with traditional methods

BeGe

Eur. Phys. J. C

= 79,978 (2019)

Eur. Phys. J. C.
73,2583 (2013)

=

Inverted-Coaxial

NIMA ,891, 106-110, (2018)

Newly developed for LEGEND
Large mass (up to 4 kg)
Excellent background rejection
with traditional methods

Materials from the GERDA and MAJORANA Collaborations
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LEGEND-200 Design

Water tank / p-Veto

e HPGe readout electronics
> based on MJD Low Mass Front-End - .
and GERDA charge sensitive ampilifier (CC4)

Detector mount: underground copper,
\ optically active PEN plates & radiopure PEl .

’ 1 ’

-
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Liquid Argon instrumentation:
inner & outer fiber barrels with
silicon photomultiplier (SiPM)
readout at top & bottom
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Larger mass (inverted coaxial)
HPGe detectors with up to 4 kg

Source funnels for
228Th calibration sources

HPGe Detector array & LAr Instrumentation



Energy and Pulse Shape Parameter Calibration
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e Weekly Th-228 source deployments used for
energy scale calibration

e Also used for pulse shape discrimination
parameter calibration

— Double Escape Peak: single-site OvR[B proxy

— Single Escape Peak: multi-site proxy
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Implications for Al/ML

e Granular Detectors + Low Backgrounds
— Low rate of physics events (< 1 Hz per detector)
— Noise-induced events can make up a large fraction of triggered waveforms

— Allows time-intensive analysis of final waveforms, but algorithms should also run on much
larger calibration data sets to confirm signal acceptance rate and stability

— Design studies rely on high-statistics simulations to study rare backgrounds

* “Traditional” pulse-shape parameters perform quite well for background rejection

— Build network structures that improve on existing pulse-shape parameters or leverage signal
physics knowledge

— Use Al/ML for tasks other than signal/background event classification

e Discovery could be claimed based on as few as 3 events
— Analysis interpretability is key
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Germanium Machine Learning (GeM) Group

Leverage efficient and interpretable Al to aid all aspects of LEGEND analysis and simulation
Lay groundwork for constructing an independent Al analysis chain
Leverage resources to educate domestic and international collaborators to gain Al experience

# Completed Project [# E. Leon Autonomous Data Cleaning and Run Monitor ]

7
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Electro

-Assisted Sim
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Electronics Emulation: Motivation

e Pulse-shape simulations based on detector
response are quite advanced, but are not being
used regularly for background modeling due to
difficulties in modeling electronics chain
response

e Fitting-based approach for MJD proved
unfeasible:

— Requires highly-degenerate 12-parameter
fit

— Instability in electronics causes changes
over time, requiring repeated fits

« Emulating electronics would allow for more-

accurate background modeling and potentially,
direct waveform fitting

» Electronics deconvolution would improve

performance of PSD
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Electronics Emulation: Network Design

‘ \
H ) |

I 8 |
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A Y Simulated Pulse Translation Path
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/ —— Simulated Pulse . ,‘; CPU-Net Output ‘1 k ATN
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e Difficulty lies in training: we have ensembles
of data waveforms and simulated waveforms,
but not the 1-to-1 matching between them

 We want the network to convert each input
into the correct counterpart, not just some
member of the ensemble

e Cycle-GAN provides a solution
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Electronics Emulation: Network Design

©c o o @9
NSOd o0 @

ADC counts [arb. units]

o
o

Generator: 1D U-Net, with added positional
encoding inspired by Transformer model

Discriminator: LSTM with Attention Mechanism,
originally designed as LEGEND Baseline Model

Planning to test physics-informed Generator
network in the future

LSTM Network Attention Mechanism
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Multisite Background Veto
K. Kilgus; Dr. T. Oli

Energy Reconstruction
L. Paudel

Position Reconstruction
R. Pitelka

Spectrum Fitting
A. Alexander
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Electronics Emulation: Results

e Preliminary results show promise

e Technical paper published as part
of the NeurlPS 2022 Workshop on
Machine Learning in the Physical
Sciences: “Ad-hoc Pulse Shape
Simulation using Cyclic Positional
U-Net”
https://ml4physicalsciences.github
.i0/2022/

e Validation studies underway:

— Using labeled data to test CPU-Net
on a waveform-by-waveform basis

— Pure simulation-based study, using
CPU-Net to reproduce extra
applied electronics effect

— Up next: validation with position-
tagged data from HPGe detector
Compton Scanning system
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ML-Enhanced Analysis Tools

High LSTM Network Attention Mechanism
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Interpretable BDT

Phys.Rev.C 107 (2023) 1, 014321, DOI: 10.1103/PhysRevC.107.014321
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https://doi.org/10.1103/PhysRevC.107.014321

Interpretable BDT: Motivation

Due to charge trapping and charge cloud diffusion in the
detector bulk, traditional analysis parameters are often highly
correlated: standard analysis fits the largest linear bi-variate
correlations detector-by-detector and corrects for them

BDT method developed to...

e Utilize all the correlations to improve background
reduction

e Reduce the need for additional targeted cuts

e Develop method for future experiments and rapid
characterization

— Reduce need for detector-by-detector calibration
— Reduce need for run-by-run calibration

— Address increased correlations in larger-mass
detectors

e Leverage interpretability to learn from the machine

Applied to full data set from the MAJORANA DEMONSTRATOR
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Interpretable BDT: Network Design

[ ISENRICHED y DETECTOR

e Boosted Decision Tree using traditional pulse shape analysis parameters, implemented in
LightGBM

e Two networks, using different training data sets:
— MSBDT tags multi-site events, trained with 22Th calibration data

— aBDT tags surface events, trained with background events from OvBp runs; uses SMOTE-MC to
augment data and create larger sample of training events

High 20

e Distribution matching performed e § — wearre | I
. channel o et — . 0.
for “non-primary” features oise+ i g
ds R - - g ‘30 _]_“S
e Shapley value used to interpret oo - R
network results and improve o ¥ . .
traditional analysis e B (mct on bt ot 000 g0 Soo, 1000 1200

(=) (b)
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Interpretable BDT: Results
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Interpretable BDT: Results

104
[ 1 Raw Spectrum
TN e BDT Analysis
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e Difference driven by late addition of new analysis parameter, which was not included in BDT

e Comparable result with far fewer person-hours! No detector-by-detector or run-by-run secondary calibration

needed.

e |Interpretability study shows that BDT has “discovered” known correlations between parameters

e Feeds back toimprove traditional analysis: choose between similar parameters based on importance and

implement new PSD based where BDT-outperforms

 Now being applied to LEGEND characterization data and exploring the use of lower-level parameters
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Semi-Autonomous Data Cleaning

Paper appearing on arXiv this week!




Motivation

Advantages over traditional data
cleaning:

e Adapts to changing run
conditions

e Allows ID of new populations
during commissioning

e Flexible framework can be used
for detector characterization
measurements in addition to
LEGEND-200

* |n some cases, improves
separability by using more
waveform information

Group and label

Extract pulse shape similar waveforms
information from > using an
waveforms unsupervised

learning classifier

Extend classifier

results to larger Analyze output and
datasets using a > assess physics event
supervised learning sacrifice
model

Unsupervised learning = no labels prior to training
Supervised learning = labels available prior to training
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Information Extraction
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« Time-sensitive Fourier transform

Haar wavelets for decomposition
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Coefficients (AC) to represent
pulse shape information
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Affinity Propagation

10

. Ao * Unsupervised learning clustering algorithm
& * Automatically computes number of clusters
N and return “exemplar” from each cluster
T ) -10

0 500 1000 1500 2000 2500 3000 3500

Estimated number of clusters: 3
0 500 1000 1500 2000 2500 3000 3500

* Obtain exemplars from approximate
coefficients, based on pulse shape

* Memory-intensive: use a 10,000
waveform subset of the data to train
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Extending AP Results

AP returns clusters, user labels them with
human-determined data cleaning categories

 Human labels used for supervised

learning training of a Support Vector
Machine (SVM)

e SVM draws decision boundaries

between clusters, used to extend
classification to full data set
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Results and Upcoming Work

Separate networks trained for calibration
and low-background data

Salting with pristine events used to check
survival efficiency: 99.98%

ML-based data cleaning now in use for
LEGEND-200 commissioning and data-
taking

— Adapts automatically to changing run and
trigger conditions: simply retrain the network

This tool has also been used for detector
characterization stand data-cleaning

Publication appearing on arXiv this week!

Surviving Events

Removed Events

Low Energy

*li= E=15keV

f — E=6keV

| = E=3keV

— E=55keV

— B=dkeV

High Energy
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05 = E=104keV

= E=1703 keV

96— E =169 keV

02
0 500 1000 2000

000

= E=55keV
— E=1025 keV
— E=53keV
— E=60keV
— E=119keV
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Adapting AP-SVM for SiPM Analysis

e Background rejection in LEGEND leverages LAr instrumentation coincidences

e Untagged cross-talk between Ge and SiPM channels prevents us from further
lowering coincident light threshold

Sample True Coincidence Sample Crosstalk

. ~ene™ o oceurring
SIPM in cable
Time and Amplitude Analysis Time and Amplitude Analysis L ZaN 4
20 : 1.0 4 I B ’ R 4 &
! =
s ! 0.8 1 : . p"‘; T 1 3
i 0.6 i
1.0 ' i
i 0.4 '
0.5 1 J /L
0.2 1
0.0 v T T T T 0.0 ! . : T T
-1000 0 1000 2‘:20 3000 4000 5000 ~1000 0 1000 2000 3000 4000 5000
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Tagging Cross-Talk with AP-SVM

e SiPM cross-talk depends on Ge waveform current, not amplitude/energy: leads to large
variety in cross-talk signal shape and makes this difficult to tag

e Cross-talk waveform shape also varies between SiPM channels
e AP-SVM may be easier to implement and more accurate than traditional data cleaning tag

Cross-talk with Fast-Rise Alpha Events Single-Site Eve‘nt CrO,SS,_Talk,

50000 ] — 4617.7 keV, A/E=204.04 4780 | .
—— 5930.7 keV, A/E=97.77 S I P M
2 40000 "
- o
g 2 3760
(6] >
30000
3 Ge :
<
20000
47000 47500 48000 48500 49000 49500 50000
time (ns) T T T T T
crosstalk to S042 47.0 475 48.0 485 49.0 495 50.0
3900 A time (ps)
|ti-Si 13
Multi-Site Event Cross-Ta
g e e, - —— —————— ]
(6]
8 3700 1 .
SiPM
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; ; ; . : » 3780 I
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<
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AP-SVM for SiPMs

e Pre-processing steps were adapted for SiPM signals:
— Use current-derivative trigger to center and window signals
— Multiple signals can be pulled from a single waveform trace
— Amplitudes normalized, but no wavelet filtering applied

e Training data salted with known cross-talk events

Initial results look
promising!

Work is underway.

Noise Triggers | Cross-Talk Varieties

Exemplar:

Tagged
Waveforms:

<
®
A
%
DS

2
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LEGEND Baseline Model with Feature Importance Supervision
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ADC cou
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LBM with Feature Importance Supervision: Motivation

e |EGEND Baseline Model (LBM) goal: make an interpretable multi-purpose
model for waveform analysis and classification tasks

We know that...

1.0 ”f?% s
'G' /
& I —
0.8 b Position reconstruction > rising edge
0.6
= Surface event ID - and
0
€ 0.4
8 . . . .
Q0.2 Multi-site ID = rising edge and
<
0.0 -

0 100 200 300 400 500 600 700 800
Time Sample [ns]

e Feature Importance Supervision: allow user to add physics knowledge to LBM

— Additional loss functions tell network what information should be useful in task,
encourages network to ignore irrelevant information
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LEGEND Baseline Model: Network Design

e LEGEND Baseline Model: RNN used to process waveform data, with attention mechanism
allowing network to “zoom in” on relevant information for the specific task

e Attention scores allow interpretability of results

e A danger of the LBM: waveforms are normalized, but baseline noise contains energy
information. Training with signal-like and background-like peaks in spectrum can lead to bias.

LSTM Network Attention Mechanism
(=) ~ Multisite Background Veto
bw

— Customized Score Function S(E, hyg)
K. Kilgus; Dr. T. Ol

‘ fw 1 I I I I I

R ; v v v v v

-~ Energy Reconstruction
L. Paudel

|
#

©
©

o
o

~ Position Reconstruction
R. Pitelka

o©
IS

o
[N}

ADC counts [arb. units]

o
o

- Spectrum Fitting
A. Alexander
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Time Sample [ns]

POOP
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LBM with Feature Importance Supervision: Network Design

e FIS forces model to Given the full Subset containing Subset Adding Model
task input, the the important containing only unimportant feature
be accurate when model returns features is unimportant information Importance
given only Im porta Nt an accurate sufficient to features does not matches
. duce accurate produces change human
features, and output Pro |
! output. uncertain result result explanation
appropriately
uncertain/invariant All Features important Unimportant Imiportant Human Feature
nimportant Importance

given only
unimportant ones

* First test: multi-site
event rejection and
energy dependence

0.2 0.2 0.2 0.2
0.0 0.0 1 0.0
100 150 200 250 0 50 100 150 200 250 0 100 150 200 250 100 150 200 250 0 50 100 150 200 250

: Same Output Model
Accurate Output Accurate Output Uncertain Output BN e - TR ETES
Task Loss Sufficient Loss Uncertain Loss Invariant Loss Alignment Loss

Method adapted from Z. Ying, P. Hase, and M.
Bansal, NeurlPS 2022, arXiv:2206.11212 > Add all together
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LBM with Feature Importance Supervision: Results

Th-228 Spectrum

10° 1
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e DEP and SEP: test multi-site rejection

— RNN + FIS outperforms traditional method and
CNN + FIS method

o Compton continuum: test energy bias of classifier
— Networks with FIS eliminate bias of LGB

Multi-Site Rejection
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LBM with Feature Importance Supervision: Results

Counts

L200 Detector Characterization Data
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e Calibration spectrum after cuts shows that energy-dependent behavior of
LGB is corrected and that LGB+FIS performs similarly to traditional method

e Next steps: testing models with varying attention targets, varying applications
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Join the LEGEND Team!

e With 3 LEGEND faculty members at
UNC, and 5 at TUNL Institutions (NC
State, Duke, and UNC), we’re nearly
always looking for graduate students!
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— You can find more information
about our group at:
https://tarheels.live/enapgroup/

-
L -
it N

e We're currently hiring a
postdoc: https://unc.peopleadmin.com
/postings/285636
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Conclusions

e The search for Ovp3B decay is one of the most compelling and exciting challenges in
all of contemporary physics, with 7Ge-based searches playing an important role

e The ultra-low backgrounds, low rates, and well-understood detector physics of Ge-

based OvBf searches make them an exciting setting for the development of new
machine learning techniques

* To make a reliable discovery of OvB[3, new techniques have to be interpretable and
validatable

e Example of ML tools under development or in use:

Electronics emulation with Cycle-GAN

Interpretable Boosted Decision Tree for improvement and automation of traditional
analysis methods

Semi-supervised data cleaning with Affinity Propagation:

LEGEND Baseline Model with Feature Important Supervision for energy-agnostic pulse
shape analysis
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