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Outline

• Neutrinoless Double-Beta Decay in 76Ge
• ML-Assisted Simulations

– Electronics Pulse Shape Emulation 

• ML-Enhanced Analysis Tools
– Interpretable BDT 
– Semi-Autonomous Data Cleaning 
– LEGEND Baseline Model with Feature Importance 

Supervision
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From Beta Decay to Double Beta Decay
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Beta Decay: Double Beta Decay:



4

Ju
lie

ta
 G

ru
sz

ko
 | 

M
L 

fo
r G

e 
0ν
ββ

 | 
 A

3D
3 

Se
m

in
ar

From 2νββ to 0νββ
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Double Beta Decay:

Standard Model 
Physics
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Neutrinoless Double Beta Decay:

New Physics!
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Why Neutrinoless Double Beta Decay?
• The discovery of 0νββ decay would dramatically revise our 

foundational understanding of physics and the cosmos
– Lepton number is not conserved
– The neutrino is a fundamental Majorana particle

• The search for 0νββ decay is one of the 
most compelling and exciting challenges 
in all of contemporary physics

• 76Ge-based searches have proven very 
successful in searching for this ultra-rare 
process

– There is a potential path for understanding the matter − antimatter 
asymmetry in the cosmos, through leptogenesis

– There is a new mechanism demonstrated for the 
generation of mass
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The 0νββ Signal

e-

W- νe

e-W-

A, Z A, Z+2

νe

2νββ: Standard 
Model process Missing 

energy

0νββ: Only if ν is 
Majorana

e-

W- νM

e-

W-

A, Z A, Z+2

No missing 
energy

Event topology:
• βs don’t travel far in most detectors
• ββ decays are “single-site” events
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Designing for Unambiguous Discovery
• What is required for a discovery of 0νββ 

decay?

• Long half-lives mean you need large 
exposures. For 3-4 counts of 0νββ at…

– 1026 years: 100 kg-years 

– 1027 years: 1 ton-year

– 1028 years: 10 ton-years

• Need a good signal-to-background 
ratio to get statistical significance

• A very low background event rate

• The best possible energy resolution

Energy (keV)

Simulated LEGEND-1000 example spectrum for T1/2 = 1028 yrs, 
BI < 10-5 cts/keV kg yr, after cuts, from 10 years of data

0νββ
T1/2 = 1028 yr
3-4 events

Flat, featureless 
background
No background peaks 
expected near Qββ

2νββ

< 10-6 2νββ events 
leak into in Qββ±2σ

≈0.1% FWHM 
energy resolution

At every stage, 0νββ searches in 76Ge are designed for unambiguous discovery: 
their goal is quasi-background free operation for their full exposure 
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Backgrounds and Discovery
• Background-free:      Sensitivity rises linearly with exposure

Background-limited: Sensitivity rises as the square root of exposure

• Our background goal is “quasi-background-free” operation
– Less than one background count expected in a 4σ Region of Interest (ROI) with the full exposure
       (FWHM: Full Width at Half Maximum; 2.355 σ for a Gaussian peak)

LEGEND-1000 Port folio Review Proposal
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FIG. 18. The sensit ivit y to a 0⌫ββ decay signal in 76Ge as a funct ion of exposure and background for (left ) limit
set t ing and (right ) a signal discovery.

B . D iscover y Pot ent ial

1. Discovery Sensitivity

LEGEND-1000 is the only experiment at present whose 3σ discovery sensitivity
reaches the bottom of the inverted ordering parameter space for even the
most pessimistic of the four of the primary theoretical nuclear matr ix element
calculations. Beingquasi-background-free, LEGEND-1000’s signal extraction is also
uniquely robust against background modeling uncertainties.

The sensit ivity to a 0⌫ββ decay signal as a funct ion of exposure and background is shown
in Fig. 18 separately for a 90% C.L. limit and for a 3σ (99.7% C.L.) discovery analysis.
The calculat ion assumes a total signal efficiency of 69%, account ing for the enrichment level,
analysis cuts, act ive volume fract ion, and containment efficiency for 0⌫ββ decay events to
havetheir full energy deposited within a crystal’sact ivevolume. If an experiment background
iszero, both thediscovery sensit ivity and thelimit sensit ivity scalelinearly with theexposure,
whereas in the background-dominated regime both sensit ivit ies scale with the square root
of exposure. The transit ion between these two regimes is governed by Poisson stat ist ics
and is computed using the approximat ion out lined in Ref. [17]. We neglect background
uncertainty under the assumption that it is well constrained from energy side bands. For
signal discovery, a low background is especially important because as the expected number
of background counts increases, the signal level required to obtain a 3σ excess grows rapidly.

LEGEND’s staged approach provides a low-risk path to world-leading sensit ivity. The
init ial LEGEND-200 phase should easily achieve a modest background improvement over
Ger da with a background index of 2⇥10− 4 cts/ (keV kgyr) or 0.6cts/ (FWHM t yr) at Qββ .
With this background level, LEGEND-200 reaches a 3σ discovery sensit ivity of 1027 yr with
an exposure of only 1t yr within five years. Using an NME range of 2.66 to 6.04 for 76Ge [22,
24, 26, 29, 32, 33, 35, 71, 72], a phase space factor of 2.363 ⇥10− 15 / yr [18] (consistent with
2.37⇥10− 15 / yr of Ref. [19]), and a value of gA= 1.27, theLEGEND-200 discovery sensit ivity
corresponds to an mββ upper limit in the range of 34− 78meV.

LEGEND’s ult imate goal is to achieve 3σ discovery sensit ivity covering the full parameter
space remaining for the inverted neutrino mass ordering, under the assumpt ion of light

-28-

76Ge (91% enr.)
median 3σ discovery sensitivity

mββ = 18.4±1.3 meV

Exposure [ton-years]
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Building the Ideal Experiment

If I want to see 1 atom decay (and be sure of 
what I saw), I need:

• Very high efficiency
• Very low rates of other kinds of events

This is hard, the world is very radioactive!
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Building the Ideal Experiment

1-2 mm

ββ decay:

α and β backgrounds
(mostly surface events):

~1 mm

~10 μm

several cm

γ backgrounds
(mostly external):

• Use event topology and 
location to reduce 
backgrounds

• More active materials = 
less missing information
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GERDA Final 0νββ results: 𝑇1/2
0𝜈𝛽𝛽 > 1.8 × 1026𝑦𝑟𝑠

MJD Final 0νββ results: 𝑇1/2
0𝜈𝛽𝛽 > 8.3 × 1025𝑦𝑟𝑠

LEGEND-200: Taking data
LEGEND-1000: Conceptual design 
development continuing
 

From the Current Generation to the Ton Scale 

arXiv: 2107.11462

PRL 125, 252502 (2020)

PRL 130, 062501 (2023)
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LEGEND-1000:
• 1000 kg, staged via individual payloads (~340 detectors)
• New infrastructure at LNGS
• Background goal < 1x10-5 cts/(keV kg yr)
• Timeline connected to review process

LEGEND-200: 
• 200 kg, upgrade of existing GERDA infrastructure at Gran Sasso
• 2.5 keV FWHM resolution
• Background goal < 2x10-4 cts/(keV kg yr)
• First 0νββ results released!

LEGEND Approach: Phased Deployment

LEGEND-1000 Pre-Conceptual Design Report: arXiv: 2107.11462
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Searching for 0νββ in Germanium Detectors

• Source = Detector: Detector is made of material enriched in 76Ge, the 
ββ decay source isotope

• Semiconductor: small band gap leads to millions of electron/hole pairs 
at Qββ, and excellent energy resolution

• Single-crystal diode under reverse bias: integrated current is 
proportional to deposited energy

• Pulse shape highly dependent on position: used for multi-site γ rejection

0νββ Candidate (Single-Site): γ Background (Multi-Site):
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Background Rejection in Point Contact Detectors
0νββ signal candidate (single-site) γ-background (multi-site)

Acceptance Window

Weighting Potential and Charge DriftWeighting Potential and Charge Drift

Acceptance Window
Charge 
signal

Current 
signal

accepted

Surface background on n+ contact Surface background on p+ contact 

Acceptance Window

Weighting Potential and Charge DriftAcceptance Window

Weighting Potential and Charge Drift

Current 
signal

Charge 
signal

External α, β, and 
γ backgrounds all 
create distinctive 
pulse shapes, 
allowing for highly 
efficient ββ decay 
event selection

Charge 
signal

Current 
signal

Current 
signal

Charge 
signal
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Germanium Detector Innovation

(Semi)-Coaxial
• Large mass (2-3 kg)
• Background rejection 

using ANN

BeGe

PPC

• Small mass (< 1 kg)
• Excellent background rejection 

with traditional methods Inverted-Coaxial

• Newly developed for LEGEND
• Large mass (up to 4 kg)
• Excellent background rejection 

with traditional methods

NIMA ,891, 106-110,  (2018)

IEEE Trans. on 
Nuc. Sci., 36, 1, 
926-930 (1989)

Eur. Phys. J. C 
79, 978 (2019)

Materials from the GERDA and MAJORANA Collaborations

Eur. Phys. J. C. 
73, 2583 (2013) 
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LEGEND-200 Design
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Energy and Pulse Shape Parameter Calibration

• Weekly Th-228 source deployments used for 
energy scale calibration

• Also used for pulse shape discrimination 
parameter calibration
– Double Escape Peak: single-site 0νββ proxy
– Single Escape Peak: multi-site proxy

DEP: Single-Site
Charge 
signal

Current 
signal

SEP: Multi-Site
Acceptance Window

Charge 
signal

Current 
signal

accepted

Acceptance Window
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Implications for AI/ML
• Granular Detectors + Low Backgrounds 

→ Low rate of physics events (< 1 Hz per detector)
→ Noise-induced events can make up a large fraction of triggered waveforms
→ Allows time-intensive analysis of final waveforms, but algorithms should also run on much 
larger calibration data sets to confirm signal acceptance rate and stability
→ Design studies rely on high-statistics simulations to study rare backgrounds

• “Traditional” pulse-shape parameters perform quite well for background rejection
→ Build network structures that improve on existing pulse-shape parameters or leverage signal 
physics knowledge
→ Use AI/ML for tasks other than signal/background event classification

• Discovery could be claimed based on as few as 3 events
→ Analysis interpretability is key



Slide by A. Li

K. BhimaniW. Quinn, S. Giri IQN Pulse Shape Emulation



ML-Assisted Simulations:
Electronics Pulse-Shape Emulation 
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Electronics Emulation: Motivation
• Pulse-shape simulations based on detector 

response are quite advanced, but are not being 
used regularly for background modeling due to 
difficulties in modeling electronics chain 
response

• Fitting-based approach for MJD proved 
unfeasible:
– Requires highly-degenerate 12-parameter 

fit
– Instability in electronics causes changes 

over time, requiring repeated fits
• Emulating electronics would allow for more-

accurate background modeling and potentially, 
direct waveform fitting

• Electronics deconvolution would improve 
performance of PSD 
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Electronics Emulation: Network Design

• Difficulty lies in training: we have ensembles 
of data waveforms and simulated waveforms, 
but not the 1-to-1 matching between them

• We want the network to convert each input 
into the correct counterpart, not just some 
member of the ensemble

• Cycle-GAN provides a solution
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Electronics Emulation: Network Design
• Generator: 1D U-Net, with added positional 

encoding inspired by Transformer model
• Discriminator: LSTM with Attention Mechanism, 

originally designed as LEGEND Baseline Model
• Planning to test physics-informed Generator 

network in the future
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Electronics Emulation: Results
• Preliminary results show promise
• Technical paper published as part 

of the NeurIPS 2022 Workshop on 
Machine Learning in the Physical 
Sciences: “Ad-hoc Pulse Shape 
Simulation using Cyclic Positional 
U-Net” 
https://ml4physicalsciences.github
.io/2022/

• Validation studies underway:
– Using labeled data to test CPU-Net 

on a waveform-by-waveform basis
– Pure simulation-based study, using 

CPU-Net to reproduce extra 
applied electronics effect

– Up next: validation with position-
tagged data from HPGe detector 
Compton Scanning system

Simulated (Input) Sim + Emulation 
(Output)

Data (Target)

https://ml4physicalsciences.github.io/2022/
https://ml4physicalsciences.github.io/2022/


ML-Enhanced Analysis Tools



Interpretable BDT 

Phys.Rev.C 107 (2023) 1, 014321, DOI: 10.1103/PhysRevC.107.014321

https://doi.org/10.1103/PhysRevC.107.014321
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Interpretable BDT: Motivation

BDT method developed to…
• Utilize all the correlations to improve background 

reduction
• Reduce the need for additional targeted cuts
• Develop method for future experiments and rapid 

characterization
– Reduce need for detector-by-detector calibration 
– Reduce need for run-by-run calibration
– Address increased correlations in larger-mass 

detectors
• Leverage interpretability to learn from the machine
Applied to full data set from the MAJORANA DEMONSTRATOR

Due to charge trapping and charge cloud diffusion in the 
detector bulk, traditional analysis parameters are often highly 
correlated: standard analysis fits the largest linear bi-variate 
correlations detector-by-detector and corrects for them
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Interpretable BDT: Network Design

• Boosted Decision Tree using traditional pulse shape analysis parameters, implemented in 
LightGBM

• Two networks, using different training data sets:
– MSBDT tags multi-site events, trained with 228Th calibration data
– ɑBDT tags surface events, trained with background events from 0𝜈ββ runs; uses SMOTE-MC to 

augment data and create larger sample of training events

• Distribution matching performed 
for “non-primary” features

• Shapley value used to interpret 
network results and improve 
traditional analysis
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Interpretable BDT: Results

MSBDT:

αBDT:
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Interpretable BDT: Results

• Difference driven by late addition of new analysis parameter, which was not included in BDT
• Comparable result with far fewer person-hours! No detector-by-detector or run-by-run secondary calibration 

needed.
• Interpretability study shows that BDT has “discovered” known correlations between parameters
• Feeds back to improve traditional analysis: choose between similar parameters based on importance and 

implement new PSD based where BDT-outperforms 
• Now being applied to LEGEND characterization data and exploring the use of lower-level parameters

PRL 107, 
014321 
(2023)



Semi-Autonomous Data Cleaning

Paper appearing on arXiv this week!
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Motivation

Advantages over traditional data 
cleaning:
• Adapts to changing run 

conditions
• Allows ID of new populations 

during commissioning
• Flexible framework can be used 

for detector characterization 
measurements in addition to 
LEGEND-200

• In some cases, improves 
separability by using more 
waveform information
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Information Extraction
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Affinity Propagation

• Unsupervised learning clustering algorithm
• Automatically computes number of clusters 

and return “exemplar” from each cluster

• Obtain exemplars from approximate 
coefficients, based on pulse shape

• Memory-intensive: use a 10,000 
waveform subset of the data to train
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Extending AP Results

• AP returns clusters, user labels them with 
human-determined data cleaning categories

• Human labels used for supervised 
learning training of a Support Vector 
Machine (SVM)

• SVM draws decision boundaries 
between clusters, used to extend 
classification to full data set
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Results and Upcoming Work
• Separate networks trained for calibration 

and low-background data
• Salting with pristine events used to check 

survival efficiency: 99.98%
• ML-based data cleaning now in use for 

LEGEND-200 commissioning and data-
taking
– Adapts automatically to changing run and 

trigger conditions: simply retrain the network

• This tool has also been used for detector 
characterization stand data-cleaning

• Publication appearing on arXiv this week!



37

Ju
lie

ta
 G

ru
sz

ko
 | 

M
L 

fo
r G

e 
0ν
ββ

 | 
 A

3D
3 

Se
m

in
ar

Adapting AP-SVM for SiPM Analysis

• Background rejection in LEGEND leverages LAr instrumentation coincidences
• Untagged cross-talk between Ge and SiPM channels prevents us from further 

lowering coincident light threshold

Time and Amplitude Analysis

Sample True Coincidence Sample Crosstalk

Time and Amplitude Analysis

Cross-talk 
occurring 
in cableSiPM

Ge

SiPM

Ge
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Tagging Cross-Talk with AP-SVM
• SiPM cross-talk depends on Ge waveform current, not amplitude/energy: leads to large 

variety in cross-talk signal shape and makes this difficult to tag
• Cross-talk waveform shape also varies between SiPM channels
• AP-SVM may be easier to implement and more accurate than traditional data cleaning tag

Cross-talk with Fast-Rise Alpha Events

Ge

SiPM

Single-Site Event Cross-Talk

Multi-Site Event Cross-Talk

SiPM

SiPM
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AP-SVM for SiPMs
• Pre-processing steps were adapted for SiPM signals: 

– Use current-derivative trigger to center and window signals
– Multiple signals can be pulled from a single waveform trace
– Amplitudes normalized, but no wavelet filtering applied

• Training data salted with known cross-talk events

Exemplar:

Tagged 
Waveforms:

Noise Triggers Cross-Talk Varieties

Initial results look 
promising! 
Work is underway.



LEGEND Baseline Model with Feature Importance Supervision
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LBM with Feature Importance Supervision: Motivation
• LEGEND Baseline Model (LBM) goal: make an interpretable multi-purpose 

model for waveform analysis and classification tasks

• Feature Importance Supervision: allow user to add physics knowledge to LBM
– Additional loss functions tell network what information should be useful in task, 

encourages network to ignore irrelevant information

Position reconstruction → rising edge

Surface event ID → turning corner and 
waveform tail

Multi-site ID → rising edge and turning 
corner

We know that…
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LEGEND Baseline Model: Network Design
• LEGEND Baseline Model: RNN used to process waveform data, with attention mechanism 

allowing network to “zoom in” on relevant information for the specific task
• Attention scores allow interpretability of results
• A danger of the LBM: waveforms are normalized, but baseline noise contains energy 

information. Training with signal-like and background-like peaks in spectrum can lead to bias.
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LBM with Feature Importance Supervision: Network Design
• FIS forces model to 

be accurate when 
given only important 
features, and 
appropriately 
uncertain/invariant 
given only 
unimportant ones

• First test: multi-site 
event rejection and 
energy dependence

Given the full 
task input, the 
model returns 
an accurate 
output. 

Subset containing 
the important 
features is 
sufficient to 
produce accurate 
output.

Subset 
containing only 
unimportant 
features 
produces 
uncertain result

Adding 
unimportant 
information 
does not 
change 
result

Model 
feature 
importance 
matches 
human 
explanation

Method adapted from Z. Ying, P. Hase, and M. 
Bansal, NeurIPS 2022, arXiv:2206.11212 
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LBM with Feature Importance Supervision: Results

• DEP and SEP: test multi-site rejection
– RNN + FIS outperforms traditional method and 

CNN + FIS method

• Compton continuum: test energy bias of classifier
– Networks with FIS eliminate bias of LGB

Multi-Site Rejection

Energy Dependence
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LBM with Feature Importance Supervision: Results

• Calibration spectrum after cuts shows that energy-dependent behavior of 
LGB is corrected and that LGB+FIS performs similarly to traditional method

• Next steps: testing models with varying attention targets, varying applications 

Double 
Escape 
Peak
(Signal-
Like)

Single 
Escape 
Peak
(Bkg-Like)

Continuum 
at Qββ
(Mixed)

A/E 90% 
(fixed)

7% 29%

LBM 90% 5% 33%

CNN + FIS 90% 36% 60%

LBM + FIS 90% 6% 33%

L200 Detector Characterization Data

Co
un

ts

Energy (MeV)

No cuts
A/E cut
LBM
CNN + FIS
LBM + FIS
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Join the LEGEND Team!

• With 3 LEGEND faculty members at 
UNC, and 5 at TUNL Institutions (NC 
State, Duke, and UNC), we’re nearly 
always looking for graduate students!
– You can find more information 

about our group at: 
https://tarheels.live/enapgroup/

• We’re currently hiring a 
postdoc: https://unc.peopleadmin.com
/postings/285636

https://tarheels.live/enapgroup/
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Conclusions
• The search for 0νββ decay is one of the most compelling and exciting challenges in 

all of contemporary physics, with 76Ge-based searches playing an important role
• The ultra-low backgrounds, low rates, and well-understood detector physics of Ge-

based 0νββ searches make them an exciting setting for the development of new 
machine learning techniques

• To make a reliable discovery of 0νββ, new techniques have to be interpretable and 
validatable

• Example of ML tools under development or in use:
– Electronics emulation with Cycle-GAN
– Interpretable Boosted Decision Tree for improvement and automation of traditional 

analysis methods
– Semi-supervised data cleaning with Affinity Propagation:
– LEGEND Baseline Model with Feature Important Supervision for energy-agnostic pulse 

shape analysis 
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