Combining Deep learning & Raman Spectroscopy for Rapid pesticide screening

Esther Kiguru The University of Nairobi ASP2024 Alumni Online Presentation

How safe is the food we consume?

- Fruits & Vegetables accounts for 25% and > 80% of diets in rural & urban areas in Kenya.
- The large population creates high demand for fresh produce daily.
- To satiate the high demand, farmers use pesticides to protect crops from pest & diseases to increase yields; This contaminates the foods.
- Repeated exposure to pesticide residue can result in a cumulative effect on the body overtime

Should we be concerned?

 There is a need for assessment to ensure Maximum Residue Limits are not exceeded

Residue Detection Methods

Standard detection methods e.g GC-MS,LC

Spectroscopy based techniques

Methodology

Pesticide Concentration Preparation

 Pesticide concentrations of
Chlorothalonil (CTL) were prepared using serial dilution techniques.

 According to the Pest Control Products Board,the Maximum Residue Limit(MRL) of Chlorothalonil was 2.0 parts per million (ppm)
Different concentrations above ,within and below the MRLs were prepared for the pesticide

Selection of suitable vegetables

- Vegetable samples of Tomatoes,Kales,spinach and lettuce were collected from a nearby farm
- The vegetable samples were washed,cut into small pieces and labelled according to the different concentration levels.

The prepared samples were then sprayed with the different CTL concentrations and left to dry for a few hours before taking spectral measurements.

Data Preprocessing & Augmentation

Data Cleaning

Examining the data for any potential missing values, gaps and removal of unwanted features Noise removal

Minimized background noise interference

Applied Outlier Detection to enhance data quality.

Augmentation

Generative Adversarial Networks(GANs)

GANs offer a powerful means to augment limited datasets, reducing the dependency on extensive and time-consuming laboratory efforts

GANs model

- As training progresses, the generator loss should decrease implicating that the generator is getting better at generating data that is more difficult for the discriminator to distinguish from real data.
- Convergence is reached when the generator loss stabilizes not necesarily reaching zero, but it should remain relatively constant.
- A decreasing discriminator loss means that the discriminator is getting better at distinguishing between real and generated data.
- when the discriminator loss stabilizes at this point, the discriminator is no longer able to easily differentiate between real and generated data.

Red laser with wavelength of 785 nm is limited to excite atoms at a raman shift of 3000 hence no significant spectra observed pass the region

Model Development

Classification Model

qualitative analysis of pesticide presence in spectral data.

Regression Model

predicts a continuous numerical output based on input features

Classification Model

The model architecture is a stacked ResNet-type 1D-CNN for spectral data classification

Layers:

Convolutional layers for spatial feature extraction. Relu activation layer for introducing non-linearity Flatten layer for one-dimensional data representation. Dense layer establishes the relationship patterns in the features

Max pooling for downsampling.

Output layer that represents the predicted classes

Optimizer: AdamW optimizer for gradient descent.

Evaluation Metrics:

Accuracy: Percentage of correctly classified samples. Loss: Error between predictions and true labels. Precision: Proportion of true positive predictions among all positive predictions.

Recall: Proportion of true positive predictions among all actual positive instances.

F1 Score: Harmonic mean of precision and recall. Support: The number of actual occurrences of each class in the specified datase

	_		Confusion Matrix										
	2ppm_or_below -	58	1	1	0	0	0	0	0	0	0	0	0
	Above_mrl_14x -	0	20	0	0	0	0	0	0	0	0	0	0
	Above_mrl_17x -	0	1	20	0	0	0	0	0	0	0	0	0
Actual	Above_mrl_20x -	0	2	0	16	0	0	0	0	1	0	0	0
	Above_mrl_23x -	0	0	0	0	5	0	7	0	8	1	0	0
	Above_mrl_25x -	0	0	0	0	0	12	5	0	2	1	0	0
	Above_mrl_29x -	0	0	0	0	0	0	19	0	1	0	0	0
	Above_mrl_38x -	0	0	0	0	0	0	1	12	3	5	0	0
	Above_mrl_94x -	0	0	0	0	0	0	0	0	20	о	0	0
	Above_mrl_173x -	0	0	0	0	0	0	0	0	0	20	0	0
	Above_mrl_191 -	1	0	0	0	0	0	0	0	0	0	19	0
	Above mrl_219x -	2	1	0	0	0	0	0	0	0	0	0	16
		2ppm_or_below -	Above_mrl_14x -	Above_mrl_17x -	Above_mrl_20x -	Above_mrl_23x -	Above_mrl_25x - bued	- Above_mrl_29x -	Above_mrl_38x -	Above_mrl_94x -	Above_mrl_173x -	Above_mrl_191 -	Above mrl_219x -

Classification Report

Class	Precision	Recall	F1-Score	Support
2ppm_or_below	0.95	0.97	0.96	60
Above_mrl_14x	0.80	1.00	0.89	20
Above_mrl_17x	0.95	0.95	0.95	21
Above_mrl_20x	1.00	0.84	0.91	19
Above_mrl_23x	1.00	0.24	0.38	21
Above_mrl_25x	1.00	0.60	0.75	20
Above_mrl_29x	0.59	0.95	0.73	20
Above_mrl_30x	1.00	0.57	0.73	21
Above_mrl_94x	0.57	1.00	0.73	20
Above_mrl_173x	0.74	1.00	0.85	20
Above_mrl_191x	1.00	0.95	0.97	20
Above_mrl_219x	1.00	0.84	0.91	19
Accuracy			0.84	281
Macro Avg	0.88	0.83	0.81	281
Weighted Avg	0.89	0.84	0.83	281
cohen kappa coeffient	0.825		D> 10 121	121 2 1
Spectr	al Data Analysis for P	esticide Detecti	or October	15, 2024 24

Regression Model

- 1D Convolutional Neural Network (CNN) followed by dense layers.
- Convolutional Layers:

1D Convolutional layers capture hierarchical features in the input data. Dropout layers and MaxPooling1D layers

are employed for regularization.

- Dense Layers: combine features for final regression prediction.
- Evaluation Metrics:

Mean Absolute Error (MAE) is used as the loss function.

R2SCORE, Mean Squared Error (MSE), and Mean Absolute Error (MAE) are used as evaluation metrics.

Architecture Input (1451, 1)Conv1D (1442.128)Dropout (1433.128)MaxPooling1D (357, 256)Flatten (None,91392) Dense (None,1)

Output

Spectral Data Analysis for Pesticide Detection

Training and Testing R2 Score

Application Programming Interface

User authentication Interface

Login

Username

Password

Login

Don't have an account? <u>Sign Up</u>

 Please log in to access this page.

Analysis of CTL using Raman data

Data Description

Welcome! Please upload your Raman spectroscopy data for analysis.

The data should be in a file format (e.g., CSV or Excel) and include columns for wavelengths and corresponding intensity values.

Ensure that your file has two columns:

- Wavenumber (cm⁻¹): Column containing the wavenumbers of the Raman spectra.
- Intensity: Column containing the corresponding intensity values.

Choose the appropriate model type (Classification or Regression) for your analysis.

Here is a sample of the Raman spectroscopy data:

Wavenumber (cm ⁻¹)	Intensity
100	10
102	10

Browse No file sele		
	Select Model Type	
Classification		~
	Upload and Predict	

Classification prediction	Home	Download CSV
Above_mrl_14x		
Above_mrl_17x		
2ppm_or_below		
Above_mrl_17x		
Above_mrl_14x		
2ppm_or_below		
Above_mrl_17x		

Regression Results	Download CSV
Predicted Concen	tration
26.79236602783203	
25.87305450439453	
132.3760223388672	
49.60273742675781	
17.16131019592285	
0.7084272503852844	
33.79109573364258	
3.1136128902435303	
1.052881121635437	
14.453977584838867	
89.1885986328125	
7.373283386230469	
45.88431167602539	
17.620405197143555	
18.032611846923828	

Thanks!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>