

UQDS – a versatile quench detection and measurement system for the HiLumi era

Jens Steckert, Reiner Denz, Tomasz Podzorny, Jelena Spasic David Bailey, Daniel Blasco Serrano, Magnus Christensen, Adam Hollos, Josef Kopal, Surbhi Mundra, Guzman Martin, Andrzej Skoczen, Dragos Gabriel Vancea & MPE-EP Colleagues

Thanks to SM18 & Test bench crews for their support !

Introduction

Motivation

- HiLumi comprises of many different new and complex magnets:
 Big variety but small numbers per item (compared to LHC)
- Design one generic system with enough resources to perform quench detection and monitoring of all HiLumi circuit elements

Implementation

- Base new design on programmable Logic (FPGA) in combination with a number of galvanically isolated front-end channels
- Quench detection algorithm defined in Gateware of FPGA
- Design is a quench detection AND measurement system

MQXFA MCBRDHA MCBXFA MQSXF MBRD MCBXFB SC Link MQXFB MBXF MCBRDVA

System performance

- Excellent analogue performance both in AC and DC measurements
- Real time digital signal processing on FPGA (filters, gain/offset correction)
- Quench detection algorithms or other user code in FPGA
- Various interlocking options and standards (modular design)
- Post Mortem event recording
- Absolute time synchronization on microsecond level
- Fast logging up to 10kHz via EDAQ

8/21/2024

Parameter	Value
Resolution (20-bit ADC)	105 nV/LSB 48 uV/LSB
ADC speed	Up to 909 kS/s
Analogue bandwidth	120 kHz @ G=1
Active input voltage range	+/-50 mV (G=450) +/-22.5 V (G=1) (1.2kV with divider)
Max differential input voltage	1 kV/1 s
Galvanic insulation	2.5 kV/1h, 5kV/1min

Gateware structure – One platform multi-purpose

Multi-purpose Gateware on multiple Hardware

➔ Toolchain allows selection of target hardware and config block

- Gateware compiled from common code base
- Common Repository
- Application specific parts defined in HDL and Spreadsheet
- Automatic VHDL code generation for register map and interfaces
- Toolchain heavily scripted (Python & tcl)
- Hardware-in-the loop verification techniques

Gateware structure – "config block" examples

UQDS ecosystem (produced devices)

Image	Description	Configuration	Status
	Bus-bar and current lead monitor	2 config blocks	120 boards produced Pilot installation in LHC
	Versatile quench detector board for LHC CONS	3 config blocks planned	60 boards produced production of 630 boards pending
	UQDSv2 16 isolated channels	27 configurations and counting	~120 systems produced and in use (usage: see next slides)
	Protection Devices Supervision Unit for HiLumi	3 configurations planned	10 systems produced for IT STRING

8/21/2024

Jens Steckert | UQDS

UQDS ecosystem (in development/prototyping)

UQDS v3 Up to 32 isolated channels, Faster acquisition speed Optimized mechanics

Evolutionary upgrade of UQDSv2 Baseline for the HiLumi quench detection system First prototype in final implementation stage

Upgrade of LHC dipole quench detection

Big production of 2500 pieces to be installed at the end of LS3. Variable threshold & radiation tolerant

→ Evolutionary upgrades and extensions of the ecosystem

EDAQ – timing and communication for UQDS

- Ethernet based solution with ~ 1000x the throughput compared to field bus used in LHC (~10Mbit per client)
- Timing precision > 1000x better than previous solution using ethernet precision timing protocol
 absolute precision better than 1us
- Fully integrated in CERN controls infrastructure
- Connects to services such as logging and post mortem

Applications outside CERN

FREIA test facility **Uppsala Sweden**

2x UQDSv2 For test of HiLumi magnets

PSI Villingen Switzerland

2x UQDSv2 for SC Magnet Lab 7x UQDSv2 quench detection of SLS2.0 2x super bend magnet

2 x UQDSv2

- Established platform with full system integration in CERN controls services
- Inhouse solution with full control about all elements
 → We can cope with obsolescence etc...
- Quite unique feature set
 - High performance measurement channels with galvanic insulation of ~5kV peak
 - FPGA for real time processing of data & hardware interlocks
- Flexible adaptable design which can serve many purposes
- Focus now in completion of units for IT STRING
- → We're open for new applications

home.cern