DISCLAIMER

- Some details are still being iterated upon (in red) will fix before practice
- The talk is long (and dense) idea is to cut at least 3-4 slides, or compress / reduce info
 - I have some ideas, but suggestions are welcome (note: some slides are repeated, with one plot or write up overlapping or changed, so those are 'quick')
- A couple of figures appearing 'blurry' will be fixed

R-ECFA Visit to the UK, Royal Society London, 13/9/2024

CMS Run 3 event with 55 vertices

Run Number: 472553, Event Number: 29247654

Date: 2024-04-05 19:16:36 CEST

Energy frontier: ATLAS and CMS (+FASER) and their upgrade

500 µm

FASER neutrinos

Monica D'Onofrio, University of Liverpool

Outline

- ATLAS, CMS and FASER experiments in Run 3:
 - status and physics highlights
- Towards the HL-LHC:
 - exploitation of the physics potential
 - Phase II upgrades

with a detailed view of UK efforts and contributions

2014 J. Phys.: Conf. Ser. 513 (2014) 022032

The UK has also a small participation in SND @LHC (UCL, Imperial) - see W. Barter's talk

UK Institutions

- 14 universities + STFC Rutherford Lab
- **11.7%** of ATLAS active authors
- 261 Physicists and 108 engineer/tech/admin
- 142 current doctoral students
 - 3 universities + STFC Rutherford Lab
 - 3.6% of CMS active authors
 - 82 Physicists and 38 engineer/tech/admin
 - 21 current doctoral students

+ around 6-7 "associated" institutes (mostly CMS)

- 4 universities
 - ~6.3% of FASER authors
- 5(6) Physicists, 5 current doctoral students

Project Funding: mainly from STFC **Additional funding**: EPSRC, UKRI, Royal Society, ERC, Marie Curie, Eric and Wendy Schmidt

UK major commitments

Run 3 Operations and performance (include Phase I upgrade)	Run 4: Phase II upgrade
Phase I: hardware, firmware and software upgrades for L1Calo and HLT&DAQ systems Operations: Inner Tracker (SCT), L1 trigger, data quality, alignment, forward detector Physics performance: luminosity, beam background, Monte Carlo generators, e/γ , μ , τ reco/ID, flavour tagging and <i>b/c</i> calibration, global particle flow, machine learning	ITk-Pixels ITk-Strips Calorimeter Trigger (eFEX & Global) High level triggering - DAQ Upgrade software RPC activities (Cambridge funds through individual UKRI-funded fellowship)
Phase I: L1 Trigger Operations: Silicon Strip tracker, ECAL, Calorimeter trigger system Physics performance: e/γ and τ reconstruction and ID, statistics tools, machine learning	ASICs for new tracking system Electronics and algorithms for trigger for: Tracker, ECAL, high granularity endcap calorimeter and L1 trigger

- **Operations and Physics performance:** Run coordinators, Track reco, e/γ reco/ID
- Computing: underpins all our research → Tier1 and Tier2 centers, core support, software development, also through coordinated projects relevant for HL-LHC and beyond (see D. Costanzo's talk)

Management and coordination roles

Major roles (management)

ATLAS:

- Spokesperson: Dave Charlton (2013-2017, deputy 2009-2013)
- Physics coordinator: Dan Tovey (2016-2017); Bill Murray (2014-2015); Dave Charlton (2008-2009)
- Collaboration Board Chair: UK provided 3 out of the 14 CB Chairs, latest: Max Klein (2017-2020)

CMS:

- Spokesperson: Jim Virdee (2007-2009)
- Collaboration Board Deputy Chair: Claire Shepherd-Themistocleous (2014)

FASER:

Physics Coordinator: Carl Gwilliam (2022-2024)

Impact on international physics and upgrade activities through coordination:

Since 01/2021: ATLAS counts 6(8 for upgrade) Level-1 coordinators including Inner Tracker PL for 6 years, 15 Physics and Combined Performance group conveners/coordinators (and >40 sub-group conveners) in diverse areas, ~55 Level-3 coordinators; CMS counts 2 Level-1 coordinators and 4 operations and physics group coordinators around trigger and searches for new physics, plus >10 L3 coordinators. In FASER, UK institutes have been Run coordinator (1) and physics analysis lead (2)

Engagement, ECR and PhD students

This is a very dynamic community, engaged in developing new ideas at all levels

- Shown also through awarded European Research Council Advanced grants, individual fellowships from UKRI (Future Leader), STFC (ERF) and Royal Society (URF)
- Early Career Researches actively participate to operations and maintenance as well as to the physics programme: regular UK physics meetings, dedicated workshops..

PhD students: a healthy profile overall

- Number of PhD students enrolled by ATLAS-UK each year since 2005: ~ 200/yr → considering length of PhD of 3.5 yr, this corresponds to ~ 650 students awarded PhD in the past decade
- CMS-UK enrolled more than 110 PhD students in the past decade
- FASER-UK enrolled 6 PhD students since 2020, 1 graduated, 1 finishing

Supported also through partnerships (i.e. RAL, DESY, industry) and STFC-CDT programmes

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

New ideas and cutting-edge technologies

Amazing results achieved thanks to deployment of new ideas of UK members, i.e.

Data Scouting/Trigger Level Analysis

- Enhance sensitivity by pushing thresholds
- Respect bandwidth limits by only storing reduced event content
- Analysis performed with trigger-level objects

https://cms.cern/news/same-lhc-samecms-more-physics Bristol, Imperial, RAL

Flavour tagging: b and c jets

- Novel Graph Neural Network approaches → optimised all the discriminating information for b-/cjets
- Auxiliary tasks: tracks classification and vertex association

Caroled graph representation representation

Significantly improved b-tag/c-tag efficiency and light-jet rejection

8

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

CMS Experiment at the LHC, CERN Data recorded: 2023-Jul-01 19:20:56.970240 GMT Run / Event / LS: 369942 / 30775538 / 75

CMS Run 3 event with 55 vertices

Run Number: 472553, Event Number: 29247654

Date: 2024-04-05 19:16:36 CEST

4.07 (549)

Physics highlights

- ATLAS-UK contributes to almost all areas of the physics programme, from SM precision measurements to searches for new physics:
 - Within the period 01/2021-12/2023, out of the 255 papers released by ATLAS, 50% had UK members contributing, and 25% had UK leadership (source: glance).
 - Strong support to tasks crucial for optimising and measuring physics object performance and dedicated involvement in computing and software

SM precision measurements

Evidence of longitudinally polarised vector bosons (ZZ to 4l)

Multi-boson measurements

10

Highlights: ATLAS B and Top physics

Sussex

/ 100 GeV

Events /

Data / Pred.

20

B physics: UK-led flagship analyses such as $B_s^0 \rightarrow \mu + \mu -$ effective lifetime and measurements of the production cross-sections of J/ψ and $\psi(2S)$ mesons (widest momenta range to date).

Top physics:

Strong involvement in top physics from the UK (UK sub-group and group conveners for long time).

Birmingham, Glasgow, Manchester, RHUL

I.e.: Observation of 4-top (6.1σ)

Eur. Phys. J. C 83 (2023) 496 Manchester

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

600

13/09/2024

Highlights: ATLAS B and Top physics

B physics: UK-led flagship analyses such as $B_s^0 \rightarrow \mu + \mu -$ effective lifetime and measurements of the production cross-sections of J/ψ and $\psi(2S)$ mesons (widest momenta range to date).

Top physics:

Observation of quantum entanglement in top-quark pairs

arXiv:2311.07288

Spin entanglement detected from measurement of observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames.

Birmingham, Glasgow, Manchester

13/09/2024

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

Physics highlights: Higgs physics

- Simultaneous measurement of WH/ZH with Higgs to cc/bb \rightarrow legacy of Run 2 results exploiting new tagging techniques:
 - H \rightarrow bb improved by 15%, H \rightarrow cc by a factor of 3.
 - Cross section measurements in bins of p_T boson

Birmingham, Glasgow, QHML, Oxford, Sheffield, UCL

ATLAS-CONF-2024-010

- UK leadership also in ttH; $H \rightarrow \tau \tau$, rare H decays
- **EWSB and Higgs-self coupling:** a flagship analysis, with strong commitment from UK institutes in Run 2 and now in Run 3 \rightarrow Focus mostly on Run-3 bb and $\tau\tau$ decays (4b, bb $\tau\tau$)

Birmingham, Liverpool, Oxford, RHUL, UCL - more ??

95% CL upper limit on HH signal strength μ_{HH}

13/09/2024

Highlights: ATLAS Searches for new physics

Vast programme of BSM searches for supersymmetry, leptoquarks, exotic Higgs boson decays, long-lived particles (LLP) and other unconventional signatures ('dark jets' or 'lepton-jets') predicted in dark-sectors.

ATLAS Preliminary Vs=13 TeV, 36.1-140 fb⁻¹

SUSY:

Since Run-1, several UK-led searches for top and bottom squarks, charginos and neutralinos, and sleptons

> Cambridge, Edinburgh, Liverpool, QHML, Sheffield

Dark-matter and hidden sectors \rightarrow LLP JHEP 02 (2024) 128

Eur. Phys. J. C 84 (2024) 719

Energy Frontier: AILAS and CIMS (+FASER) and their upgrade

UK-CMS is strongly engaged in top physics (Brunel, Bristol, RAL), Higgs physics (Imperial), and searches for new physics, including SUSY, dark matter, long-lived particles (Imperial) and new resonances as Z' (RAL)

Top physics

- Long-standing contributions on top-pair cross sections, single-top studies, top MC modelling etc.
- Recent highlight four-top process
 - UK-led first evidence of this important process (later superseded by observation)

Bristol, Brunel

UK-CMS is strongly engaged in top physics (Brunel, Bristol, RAL), Higgs physics (Imperial), and searches for new physics, including SUSY, dark matter, long-lived particles (Imperial) and new resonances as Z' (RAL)

0.49 (0.32)

UK-led recent report on **Dark sector searches**: huge effort to map over 40 results and produce new interpretations

arXiv:2405.13778

UK-CMS is strongly engaged in top physics (Brunel, Bristol, RAL), Higgs physics (Imperial), and searches for new physics, including SUSY, dark matter, long-lived particles (Imperial) and new resonances as Z' (RAL)

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

UK-CMS is strongly engaged in top physics (Brunel, Bristol, RAL), Higgs physics (Imperial), and searches for new physics, including SUSY, dark matter, long-lived particles (Imperial) and new resonances as Z' (RAL)

UK-led recent report on **Dark sector searches**: huge effort to map over 40 results and produce new interpretations

arXiv:2405.13778

JHEP 03 (2024) 105

based on a special "parked data" stream collected in 2018

Imperial

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

13/09/2024

Physics highlights: FASER

Built in 2021, in operation since 2022 Run 3 start, FASER targets new light, weakly interactive particles and high-energy neutrinos produced at the ATLAS collision point

Strong UK contributions with STFC-funding through PhDs (no MoU involved, cheap experiment built with left-over...):

13/09/2024

First constraint in thermal relic region @ low coupling for 30 yrs!

Data 27 fb⁻¹/N = 0

Physics highlights: FASER (2)

First direct observation of neutrinos and measurement of v_e and v_{μ} interactions

Physics highlights: FASER (2)

First direct observation of neutrinos and measurement of v_e and v_{μ} interactions

13/09/2024

CMS

Pushing towards the energy frontier: HL-LHC

HL-LHC prospect studies, done also to understand the impact of the detectors' performance \rightarrow strong engagement of **UK-ATLAS** and **UK-CMS** for the Yellow Book reports (2017-19)

CVS Reserves

From SM precision measurements to di-Higgs and new physics searches, huge potential

The Phase II upgrades timeline

HL-LHC

- LS3 (2025-2029) could shift by 6-9 months
- Run 4 and beyond (HL-LHC):
 ~10 years programme with an LS4 shutdown in 2033+:
 - Inst Lumi: 5-7.5 x 10³⁴ cm⁻² s⁻¹
 - 3-4 ab⁻¹ / experiment expected
- 14 TeV collisions

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-08 08:30:28.497920 GMT Run / Event / LS: 280327 / 55711771 / 67 Run 4-5 up to ~200 proton collisions every 25 nanoseconds

Challenges and solutions

- High instantaneous lumi (pileup) → improve granularity and timing information
- High integrated lumi = high radiation environment → replacement of tracker and endcap calorimeter
- Huge amount of data (computing, storage) → new trigger & DAQ systems

GPDs upgrade programs at glance

• **Funding**: mainly STFC, capital contribution to upgrade in line with fair share. Current (being extended):

• **ATLAS**: £128M for 12 years (2014-2026)

CMS: £13.6M for 6 years (2019-2025)

ATLAS upgrade: Inner Tracking Detector (ITk)

One of the main UK deliverables for ATLAS

- Complete replacement of the current inner detector
 - ► Larger angular coverage (η : 2.5 → 4)
 - High radiation tolerance (up to 1 x 10¹⁶ neq/cm²)
- Very large total surface for Pixel and Strip sensors
 - UK is responsible to build 40% of the strip modules and 50% of the strip local supports (cores) + strip service modules
 - UK deliverables in pixel include assemble and test 20% of ATLAS Pixel modules and build one endcap

13/09/2024

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

Inner Tracking Detector (ITk): status

- Schedule remains challenging, but lot of good progress has been made
 - ITK strips:

ITK pixels:

Birmingham, Cambridge, Glasgow, Lancaster, Liverpool, Oxford, QMUL, RAL PP, RAL TD, Sheffield, UCL, Warwick

Cold tests (-70 deg) on-going

- Institutes ready for production highlight to be included in 1 sentence
- huge work to understand and solve sensors problems in collaboration with US and other institutes

"Interposer" solution, module design modified

```
Interposers - <u>Cambridge</u>
```

Lightning recap: SE4445+kapton cut & roll method

Edinburgh, Glasgow, Lancaster, Liverpool, Manchester, Oxford, QMUL, RAL PP, RAL TD, Sheffield, UCL, Warwick

- Assembly site, construction processes and quality insurance tests in place at all sites
- Joint task force ATLAS-CMS expert for ASICs to study challenges in hybridization process and ASICs
- Preparation in SR1 in full progress with deliverables from UK getting to CERN...

Preparation for I&C in SR1

ATLAS upgrade: Trigger and DAQ

- Another important UK deliverable
- Phase II TDAQ specifications are challenging:
 - L0 rate 1 MHz with 10us latency
 - EF output rate 10 KHz
 - Estimate event size of 4.6 MB

Birmingham, RHUL, UCL, RAL, Edinburgh (to be checked)

LO Trigger: prototyping and testing

DAQ: FELIX prototype testing on-going

Event filter: demonstrators progressing well and on track, very good progress on GPU and FPGA support in ATLAS software

13/09/2024

ATLAS upgrade: Trigger and DAQ

- Another important UK deliverable
- Phase II TDAQ specifications are challenging:
 - L0 rate 1 MHz with 10us latency

E autout rata 10 1/11-

DAQ: FELIX prototype testing on-going

Event filter: demonstrators progressing well and on track, very good progress on GPU and FPGA support in ATLAS software

Overall: ALTAS-Phase II upgrade work is also relevant for

Rirmingham RHIII IICI RAI

- training of qualified personnel: 55 PhD students have graduated in the past 5 years with activities on upgrade, apprenticeship programs for technical staff, research and development spin-off..
- Industry engagement: collaborations with national and international partners, including Micron Superconductor, ZOT, Graphic, INTEL ...

13/09/2024

CMS upgrade: Tracker

- Main UK-deliverable: common electronics platform contributing to tracker, calorimetry and trigger
- CMS also going through a total replacement of its tracking system
 - Increased granularity (~1200 tracks / unit of pseudorapidity)
 - Reduced material to preserve calorimetric resolution
 - Contribution to the L1 trigger (outer tracker tracks identification)

UK: electronics and algorithms for track trigger, and ASICs \rightarrow progressing well, with **ASICs completed**

CMS upgrade: Calorimeter and DAQ

CMS calorimeter (ECAL) system fully upgraded

- Radiation tolerant, shower lateral compactness, fine granularity
- Resolution 20 ps /channel and contribution to the L1 trigger

DAQ:

- 50k high-speed front-end optical links
- Up to 60 Tb/s data rate, total event size 7-10 MB

UK deliverables:

electronics and algorithms for trigger for both ECAL and HGCAL

Recent achievements: test beam

Common technology: off-detector electronics board Serenity

- Complete hardware production including QA
- Complete software and firmware

https://serenity.web.cern.ch/serenity/

Successful ASIC work Collaboration with Serenity

Tracker test beam

Muons @ 160 GeV

12x 2S tracker modules (each with 16 CBC ASICs)

Readout via Serenity prototype (triggerless)

HGCAL test beam

Muons, electrons and pions

Serenity readout (selftriggering)

Billions of events recorded at up to 100 kHz

13/09/2024

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

FASER @ HL-LHC

- FASER has been recently approved to run in Run 4 as is. Great additional physics potential in studies of hidden sectors and measurements of high-energy neutrino. No major upgrades foreseen BUT:
 - New pre-shower system would have been operational since 2025 by then

- Resolve diphoton events
- Improve sensitivity for searches of LLP $\rightarrow \gamma\gamma$

FASERv emulsion detector not as efficient – discussions about replacements/alternatives in progress

Several ideas from UK groups, in particular the possibility of a silicon/tungsten emulsion detector using uninstalled SCT modules

(being studied by *Manchester*)

13/09/2024

Liverpool supporting Geneva (Lead)

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

FASER @ HL-LHC: a totally different scenario

- FASER has been recently approved to run in Run 4 as is. Nonetheless:
- In the assumption that a totally new facility, the Forward Physics Facility, is supported and goes ahead, a totally new, different scenario of opportunities arise

FASER-2 as part of a suite of experiments host at the FPF

Feasibility and potential detector layout studies carried out by UK-FASER institutes, Oxford, RAL.

Phase-II Computing

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UP GRADE/CERN-LHCC-2022-005/

Year

But also: extensive use of GPUs needed for development and deployment of new AI-based approaches for trigger and analysis

 E.g.: CMS: improved computing capabilities of the HLT system thanks GPUs → crucial for UK-led data scouting approach

Computing (infrastructure/software) is essential to exploit future experiments and UK play a key role within the international LHC community

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade

13/09/2024

A lot of work on-going to cope with that → manageable, exploiting rapidly changing technology landscape (see Davide's talk)
 In UK, coordinated efforts (i.e. within the SWIFT-HEP project) to

The HL-LHC presents significant computing challenge

In UK, coordinated efforts (i.e. within the SWIFT-HEP project) to address challenges from various perspective → efficient MC production, efficient analysis software etc.

Summary & Outlook

- UK community contributes crucially to ATLAS, CMS and FASER, in operations and maintenance, and producing many results key to understand the SM and explore beyond
- The UK is a very dynamic community, with ECR fora and initiatives, exploitation of cuttingedge techniques
- [not discussed here] Scientific outcomes can be 'enriched' with additional small experiments 'using' GPDs, with UK-initiatives such as ANUBIS
- Physics prospects for HL-LHC offer incredible opportunities:
 - Upgrades of the ATLAS and CMS detectors progressing, UK-deliverables substantial but well on-track; strong engagement of UK institutes also on FASER @ HL-LHC

Huge thanks to many, in particular to Steve McMahon, Alex Tapper and Joel Goldstein

• Computing is a challenge which the UK is targeting through collaborative efforts

Back up

38

Energy Frontier: ATLAS and CMS (+FASER) and their upgrade