

MAPS Simulations with Hexagonal Pixel Designs

The TANGERINE collaboration at DESY

: A. Chauhan, **E. Choi**, M. Del Rio Viera, J. Dilg, D. Eckstein, F. Feindt, I.-M. Gregor, K. Hansen, Y. He, L. Huth, S. Lachnit, **L. Mendes**, B. Mulyanto, D. Rastorguev, C. Reckleben, S. Ruiz Daza, J. Schlaadt, P. Schütze, A. Simancas, S. Spannagel, M. Stanitzki, A. Velyka, G. Vignola, H. Wennlöf

September 2, 2024

Index

□ TANGERINE

- □ Development Flow
- □ Monolithic Active Pixel Sensor (MAPS)
- □ TCAD and Allpix² Simulation
- Gigures of Merit (FOM)
- Motivation
- □ Simulation Setup
- Results
- Conclusion

TANGERINE

TANGERINE (Towards Next Generation Silicon Detectors) Work Package 1 (WP1) aims the development of 65 nm CMOS MAPS (Monolithic Active Pixel Sensor) for future lepton collider and test beam telescopes.

	(HL-) LHCFuture Lepton(ATLAS/CMS)Colliders			
Material budget	10% X ₀	< 1% X ₀		
Single-point resolution	~ 15 <i>µ</i> m	≤ 3 <i>µ</i> m		
Time resolution	25 ns	25 ns ~ ps – ns		
Granularity	50 µm x 50 µm	≤ 25 µm x 25 µm		

S. Spannagel, 93rd PRC

Main simulation studies

- Simulation of square MAPS in different sizes and layouts
- Simulation of hexagonal MAPS in different sizes and layouts
- □ Transient simulation for timing performance

Prototype chip measurements are compared to the simulation results.

(by simulations and prototype chip tests)

TANGERINE chip requirements

Parameter	Value
Single-point resolution	$< 3 \ \mu m$
Time resolution	< 10 ns
Granularity	$<25~\mu{\rm m}$ \times 25 $\mu{\rm m}$
Particle rate	1 MHz
Material budget	$< 0.05\% X_0$

A. Simancas et al., https://doi.org/10.1016/j.nima.2024.169414

Development Flow

Development Flow

we take a technology-independent simulation approach with generic numbers.

Monolithic Active Pixel Sensor (MAPS)

** Not to scale

epitaxial layer

N-well collection electrode pwell deep pwell Depletion region P' epitaxial layer depletion boundary depletion boundary

Standard layout

https://doi.org/10.1016/j.nima.2017.07.046

- P-type epitaxial layer (epi-layer) with lower doping concentration than p-type Si substrate
- \rightarrow high-resistivity, depletion region*
- □ Small n-well collection electrode
- Employing commercial CMOS circuitry for readout electronics (NMOS, PMOS)
- \rightarrow low material budget, compactness
- □ N-gap: low dose n-type implantation
- \rightarrow larger depletion region, higher efficiency

- o P-type substrate
- Reverse bias voltage
- Not fully depleted

N-gap layout

https://doi.org/10.3390/instruments6040051

* Depletion region (backup #31)

Let's think about the PN junction. We can assume that there're **no mobile charge carriers** in the middle of the n-side and p-side.

Any electron or hole entering this area **will be swept out by the electric field**.

 \rightarrow In this area, charges move by drift not by diffusion.

It attracts charges fast and strongly. When the **reverse bias** is applied to the PN diode, **depletion region gets wider**.

Doping Concentration and Electric Field

10 12 -5 ° X 5 -5

10

12

Sentaurus TCAD

Simulation

Data flow in Allpix²

- Sentaurus TCAD
- SProcess: fabrication process simulation
- SDevice: simulates numerically the electrical behaviour of a single semiconductor device
- SDE: 2D and 3D device structure editor, geometric operations
- SYNOPSYS → Doping concentration, electric field, mobility, electrical characteristics, ... https://www.synopsys.com/manufacturing/tcad.html

Monte Carlo simulations for semiconductor tracker and vertex detectors

- Simulation of charge deposition and transport in semiconductor detectors
- Digitization to hits in the frontend electronics
- Using Geant4 and ROOT
 https://project-allpix-squared.web.cern.ch/usermanual/allpix-manual.pdf

0

Figures of Merit (FOM)

: A quantity to characterize the performance of the MAPS

1. Cluster size

Number of pixels in each reconstructed cluster (> 1)

- □ Shows the degree of charge sharing
- \rightarrow Larger cluster size means higher charge sharing
- □ Mean cluster sizes across the full pixels are in the graphs.

2. Efficiency

- How many particles generate signals compared to the number of the incident particles.
- □ 0 ~ 1 (or 0 ~ 100 %)
- □ Mean efficiency across the full pixel are in the graphs.

3. Spatial resolution

Difference between reconstructed cluster position and real particle position (residual)

Cluster map

Motivation

As a part of the TANGERINE WP1, we study the possibility of using hexagonal pixels.

A. Simancas and L. Mendes

Hexagonal pixels

- □ Fewer number of neighboring pixels
- □ Reduced electric field effects from corners
- Reduced path between the corner and the electrode in the same area of pixels

□ The difference between square and hexagonal pixels is not significant because of the thin epi-layer (10 μ m).

 \rightarrow Additional study for comparing the epi-layer thickness with pitch and layout changes

Simulation Setup Standard N-gap NWELL COLLECTION nwell collection electrode NMOS PMOS ELECTRODE PWELL PWELL NWELL DEEP PWELL DEEP PWELL LOW DOSE N-TYPE IMPLANT epitaxial layer DEPLETION BOUNDARY DEPLETED ZONE depleted zone letion boundary P⁼ EPITAXIAL LAYER * SUBSTRATE https://doi.org/10.1016/j.nima.2017.07 https://doi.org/10.3390/instruments60 40051 .046

1. Pitch and layout comparison at 10 μ m epi-layer

2. Epi-layer and layout comparison at 18.00 μ m pitch

+ Integration time comparison

- 25 ns
- 40 ns
- 5 μs

Pixel size and Layout Comparison

(10 µm epi-layer)

Cluster Size

25.00 μ m pitch has smaller cluster size for both layouts.

N-gap

- N-gap has smaller cluster size (less charge sharing) as expected
- o Cluster sizes are inversely proportional to the pitch.

Standard

o Cluster sizes are not proportional to the pitch.

Efficiency

The highest efficiency in 25.00 μ m N-gap

- o N-gap has higher efficiency than Standard as expected.
- o N-gap efficiency is proportional to pitch size.
- o Standard efficiency is inversely proportional to pitch size.

** More details are in the slide #23 (backup)

Residual in X: Spatial Resolution

(10 μ m epi, multiple pitch sizes)

No significant differences between X and Y as expected.

- o Standard has higher spatial resolution than N-gap as expected.
- If we use the smaller pitch we can overcome the layout differences as expected.

N-gap is more stable under 200e threshold.

Electric Field in 30 μ m Epi-layer

Epitaxial Layer and Layout Comparison

(18 μ m pitch, 25 ns integration time)

Cluster Size

 \circ 10 μ m has smaller cluster size than 30 μ m.

- \circ The highest efficiency in 30 μ m N-gap
- $\,\circ\,$ N-gap has higher efficiency than Standard.

Out of Expectation

(18 μ m pitch, 25 ns integration time)

Cluster Size

- \circ 10 μ m has smaller cluster size than 30 μ m.
- $\circ~$ In 30 $\mu m,$ N-gap has bigger cluster size than Standard.

- $\,\circ\,$ The highest efficiency in 30 μm N-gap
- o N-gap has higher efficiency than Standard.
- $\circ\,$ In Standard, 10 μm is more efficient than the 30 $\mu m.$

Integration Time Comparison

: 25 ns, 40 ns, 5 μ s in both epi-layer (standard, 18 μ m pitch)

(No significant change in 10 μ m epi-layer.)

\circ In 30 μ m, cluster size and efficiency increases with the integration time.

 \circ 30 μ m exceeds 10 μ m in efficiency at 5 μ s.

Threshold: 60e

Linegraphs for Standard (40 ns)

10 μ m epi-layer

 $30 \ \mu m$ epi-layer

Linegraphs for N-gap (40 ns) 10 µm epi-layer

30 μ m epi-layer

x (pixels)

Now We Can Understand ..

(10 and 30 μ m epi-layer, 18 μ m pitch)

Explanation of 30 μ m: It makes wide diffusion

- In Standard, many charge carriers can be recombined before reaching the depletion region of the far pixel. That's why we lose efficiency rapidly as the thresholds increase.
- But in N-gap, it has larger depletion region. Thus, although they can widely move by diffusion, carriers can easily reach the depletion region in far pixels and generate signals.
- \Box We can also explain why only the 30 μ m epi-layer is influenced by the integration time.

Total Charge Per Event

(25 ns, 40 ns, 5 μ s for standard in both epi-layer)

* Fit function: Landau distribution

10 μ m epi-layer

Most probable value

10 µm		30 µm		
25 ns	5.00e-1	25 ns	4.96e-1	
40 ns	5.10e-1	40 ns	6.45e-1	
5 μs	5.15e-1	5 μs	1.16	

30 μ m epi-layer

In 30 μ m, charges diffuse for a long time going far pixels, and they couldn't be collected in the integration time.

This also supports our explaination!

Conclusion

- 1. In 10 μ m epi-layer, N-gap has smaller cluster size and higher efficiency. However, it shows worse spatial resolution compared to the Standard. (It's because larger cluster size makes reconstruction position more precise)
- 2. 30 μ m epi-layer shows unexpected behaviors in cluster size and efficiency.
- \circ In 30 μ m, N-gap has bigger cluster size than Standard.
- o In Standard, 10 μ m is more efficient than the 30 μ m.
- To investigate, we changed integration time and checked the charge and linegraphs. :Only in the 30 μ m, cluster size and efficiency increases with the integration time.
- → It's because 30 μ m epi-layer makes carriers diffuse widely and the Standard cannot collect them due to its small depletion region.

Published References

The Tangerine project: Development of high-resolution 65 nm silicon MAPS <u>https://doi.org/10.1016/j.nima.2022.167025</u>

Towards a new generation of Monolithic Active Pixel Sensors <u>https://doi.org/10.1016/j.nima.2022.167821</u>

Developing a Monolithic Silicon Sensor in a 65 nm CMOS Imaging Technology for Future Lepton Collider Vertex Detectors https://arxiv.org/abs/2303.18153

Simulations and performance studies of a MAPS in 65 nm CMOS imaging technology https://doi.org/10.1016/j.nima.2024.16941

Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles https://doi.org/10.48550/arXiv.2408.00027

Thank you

Backup

More Details

10 um epi-layer (slide #12, 13)

Efficiency proportionality

N-gap: bigger pitch offers larger space for charge collection (depletion region)
 Standard: bigger pitch makes larger space out of depletion region. It worsens the efficiency. This also can explain why the cluster sizes change easily with the pitch in N-gap compared to Standard.

** Comments from H. Wennlöf Cluster size changes with pitches

As the pitch increases, there will be smaller room for charge sharing.

When efficiency gets lower, we also lose cluster size.

Layouts

Performed using generic doping profiles for the 3 Sensor layouts:

small depleted volume ↓

- low efficiency
- high charge sharing between pixels

larger depleted volume ↓

- improvement in efficiency
- impairment of resolution

higher electric field in pixel corners

- improvement in efficiency and charge collection
- impairment of resolution

Work by A. Simancas

TCAD

Finite element simulation

Sentaurus TCAD Technology Computer-Aided Design

Allpix²

Spatial Resolution

RMS of 3σ (99.7 %) residual distribution

Residual: difference between reconstructed cluster position and real particle position

In Allpix² simulation,

Reconstructed cluster position: chargeweighted mean of a cluster

$$x = \frac{\sum_i x_i q_i}{\sum_i q_i}$$

- Real particle position: randomly drawn position from a Gaussian distribution
- Bigger cluster size leads to the smaller spatial resolution because it makes more precise reconstructed position

D We use an η -correction

: Before (blue) and after (red) η -correction

Deep P-well

NMOS, PMOS \rightarrow p-well \rightarrow deep p-well structure. (In TCAD simulation, we use it without CMOS.) P-well is bigger than deep p-well for more space for charge collection.

TCAD Files

*.grd: grid file. Structure of mesh.

*.dat: contain variables such as e-field potential and carrier concentrations at every mesh point in the device.

Prototype Chips

MLR1 (2021)

ER1 (2023)

DESY MLR1: fully characterized

- Entirely developed at DESY
- Test structures for CSA characterisation developed at DESY
- Block of 2x2 16 µm pixels with an analogue readout for pixel characterisation

Analogue Pixel Test Structures (APTS): fully characterized

- Designed at CERN (DESY involved in the lab and TB characterisation)
- · 4x4 pixels structure with analogue output
- Different sensor pitches and layouts

DESY.

DESY Chip V2 in preparation

- 2x2 pixel (35x25 µm²) with all-in-pixel functionality
- · External access to CSA and discriminator output
- N-gap layout with 2.5 µm and 4 µm gap
- Single Front-End with charge Injection

H2M (Hybrid-To-Monolithic) on going characterization

- · Collaboration of DESY, CERN and IFAE
- 3 x 1.5 mm², 64 x 16 square pixel, 35 µm pitch
- · 8-bit counter per pixel
- 4 acquisition modes (ToA, ToT, counting, binary RO)

21

Depletion Region

With the reverse bias voltage (ref. G. Lutz, Semiconductor Radiation Detectors)

Fig. 5.2. A p-n diode junction detector: charge density, electric field and potential for partial (*continuous line*) and full (*dashed line*) depletion