

Linear wire scanner mechanics update

12th August

Project team meeting

Test rig update

- Designed parts
 - Energy chain bracket designed and ordered
 - Additional mass blocks **designed**

Machined parts

- Solution identified for large component warping
- Frame parts due for completion COP Tuesday
- Assembly of frame Wednesday/Thursday
- Assuming no issues Wiring can commence
 Friday

Ordered parts

- Magnets **arrived**
- Energy chains ordered
- Fasteners arrived
- Non-magnetic callipers reserved from magnet group
- Strain gauge

Project timeline

Long term planning

Instrument design update

Updates from previous meeting:

- Chamber
 - Aperture changes
 - Wall thickness increase
 - Final dimensions depending on RF contact
 - Thin wall section dimensions
- View ports added
 - Need to be tested/modified to survive bakeout
- Card
 - Two options being considered
- Ruler
 - Concept designs in place to discuss with Selba
- Motion system added
 - Requires modification for bakeout access

Instrument design update

Instrument boundary definition

Option 1

Vacuum chamber remains installed in the beamline.

Instrument can be removed/replaced separately.

Considerations

- Impedance issues if instrument not in place
- Square CF flange blanks required
- Optical port design more complex and further from wire

Instrument boundary definition

Option 2

Instrument is calibrated / commissioned / installed / removed as an entire assembly.

Considerations

- Large expense for additional vacuum chambers required
- Drift tube replacement parts required (cheap and no issue for impedance)
- Optical ports can be lowered closer to wire
- Faster intervention time?

Viewport: current design

13 August 2024

Viewport: thin section

13 August 2024

Presenter | Presentation Title

Card options

13 August 2024

RF study

- Still exploring sliding contact
 - Brush style contact
 - Carbon fiber
 - Measured conductance lower than expected
 - RF simulations with real conductance ongoing
 - Metal
 - Copper/brass too ductile elastically deforming material required
 - Very thin (25 micron) titanium sheet could work
 - Point contacts
 - Ball contacts
 - Maximum contact point distance study
 - Flat springs

Current ideal RF contact geometry

Wake impedance Z [Magnitude]

