
Columnar file I/O with
hepconvert and Uproot      

Zoë Bilodeau1, Jim Pivarski1

1Princeton University

Support for this work was provided by NSF cooperative agreements 
OAC-1836650 and PHY-2323298 (IRIS-HEP).



Main Projects: hepconvert and Uproot feature

● hepconvert: 
○ Columnar conversion package in Python
○ Worked with Uproot and ROOT files; served as a precursor 

to more in-depth work with Uproot
● Uproot:

○ Worked on adding a new feature: Adding new TBranches to 
an existing TTree



hepconvert: Time Spent on Columnar File Conversions

● Unnecessary time and energy from physicists to convert 
between file formats

● Even basic conversions require multiple lines of code, multiple 
file I/O packages
○ There are a number of common modifications that take extra 

time
● Many users are writing very similar code



What is hepconvert?

● High-level Python converter between ROOT, Parquet, (and 
eventually) and HDF5

● Uses common I/O packages
○ Uproot
○ Awkward
○ h5py
○ Dask-awkward



Goal: Quick, Simple File Conversions

● Main goal of hepconvert is convenience

● Blocks of code -> single function call
○ One package
○ Memory management and compression handled
○ Parameters for customization

● User input oriented



Overview of Features:
● Features added at user request

○ Converters between Parquet and ROOT
○ ROOT to ROOT
○ Common file manipulations

■ Add/remove data
■ Hadd-like functionality
■ Change compression

○ Address common issues
○ Command Line Interface



Memory Management: Batches
● For large files, it is necessary to read and write data 

in batches

● Can take time depending on file structure and I/O 

package;
○ Each “batch” is a different structure
○ Always require multiple lines of code/loops

Parquet File
Row-groups Column 1

1

2

TTree (ROOT)
Entries Branch 1 Branch 2

1 data data
data data

1 data data
data

1
2
3
4
5
6

2

Parquet File
Row-groups Column 1 Column 2

1

2

data
data

2



Work with ROOT files:
● Pure Python; users don’t need ROOT

● Writing capabilities of Uproot 

○ Currently works with flat TTrees, NanoAOD-like files
○ One level deep



Parquet to ROOT

● One Parquet file -> one TTree
○ Now have merge_parquet; could merge data from multiple 

Parquet files to one TTree

● Writing capabilities of Awkward Array

○ Compression settings and many other options available
○ ak.to_parquet()

Parquet file to ROOT file:

>>> hepconvert.root_to_parquet("out_file.parquet", "in_file.root")



ROOT to Parquet

● One TTree -> one Parquet File
● Can merge TTrees, or specify one TTree to be written
● Step-size becomes row-group size
● Options:

○ Branch skimming, branch slimming

ROOT file to Parquet file:

>>> hepconvert.root_to_parquet("out_file.parquet", "in_file.root")



Awkward Feature: Iterative Writing to Parquet Files

● Re-implemented ak.to_parquet_row_groups()
● Writes data to parquet files in batches (row-groups)
● Pass data as an iterable over data rather than array



Copy (and modify) ROOT Files

● Features for altering files
○ Automatically groups branches to avoid duplicate counter branches 

when writing with Uproot
■ Instead of manually choosing and grouping branches with 

ak.zip()
○ Branch-skimming, TTree removal, Branch removal

■ Wildcarding supported
○ Can either write to a new file or return a writable uproot object 

in memory to then work with
○ Change compression type
○ Run from command-line

>>> hepconvert.copy_root("out_file.parquet", "in_file.root")



Merging TTrees and Histogram Summing (hadd-like)

● add_histograms():

○ Sums contents of histograms in many files 
○ Writes to a new file

● merge_root():
○ Merges like TTrees, sums histograms from many files
○ Branch skimming, branch slimming, cuts, etc.
○ Customizable parameters similar to hadd

■ union, append, same_names
● Not dependent on ROOT!



Uproot Feature: Add Branches to an Existing TTree
● Goal: Add one or more branches to an existing TTree
●

○
○ uproot.add_branches(‘tree’, {branch1: data, branch2: data})

● Example of use:
○ Addresses common issue with CMS data

■ Users wanted to merge NanoAOD files with mismatched branches
■ Can backfill with booleans

Jets_*

Events

Muons_*

Trigger_branch2

Jets_*

Events

Muons_*

Trigger_branch1

>>> uproot.add_branches(‘tree’, {branch1: data, branch2: data})



Copying TTree and Old Branches
Challenge: Addressing Robustness

● Rewrites TTree metadata
○ Can only handle most 

recent ROOT versions 
(generally after 2017)

● Copies branches from 
original TTree; copying 
process does not depend on 
branch type/content

https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

Rewritten (new TTree 
object created)



Copying TTree and Old Branches
Challenge: Addressing Robustness

● Rewrites TTree metadata
○ Can only handle most 

recent ROOT versions 
(generally after 2017)

● Copies branches from 
original TTree; copying 
process does not depend on 
branch type/content

https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

Bytes are copied, 
reference numbers 
updated



Copying TTree and Old Branches
Data rewritten or updated: 

● Information describing TTree and data
○ New TTree object with updated metadata

● Reference numbers
○ For objects referenced in multiple places

Data directly copied:

● Entirety of TBranches, including TLeaves and TBaskets

Copying was done using Uproot’s reading ability; it recognizes objects 
and can find and skip over portions (i.e. a TLeaf within a TBranch)



Copying TTree and Old Branches
Challenge: Changing TTree metadata size

● Files made with ROOT can have smaller TTree metadata; when 
copying this should always be changed to the larger size

● This can shift all TRefs as they depend on object’s position 
in chunks; problem to update

● Difficult to diagnose



Adding New Branches

● They are appended to the end of the TTree, should not 
affect previous data

● Can only add version 13 TBranches, reasonable limitation 
of Uproot

● Serialized very similarly to when a new TTree is written
● Can add multiple at once


