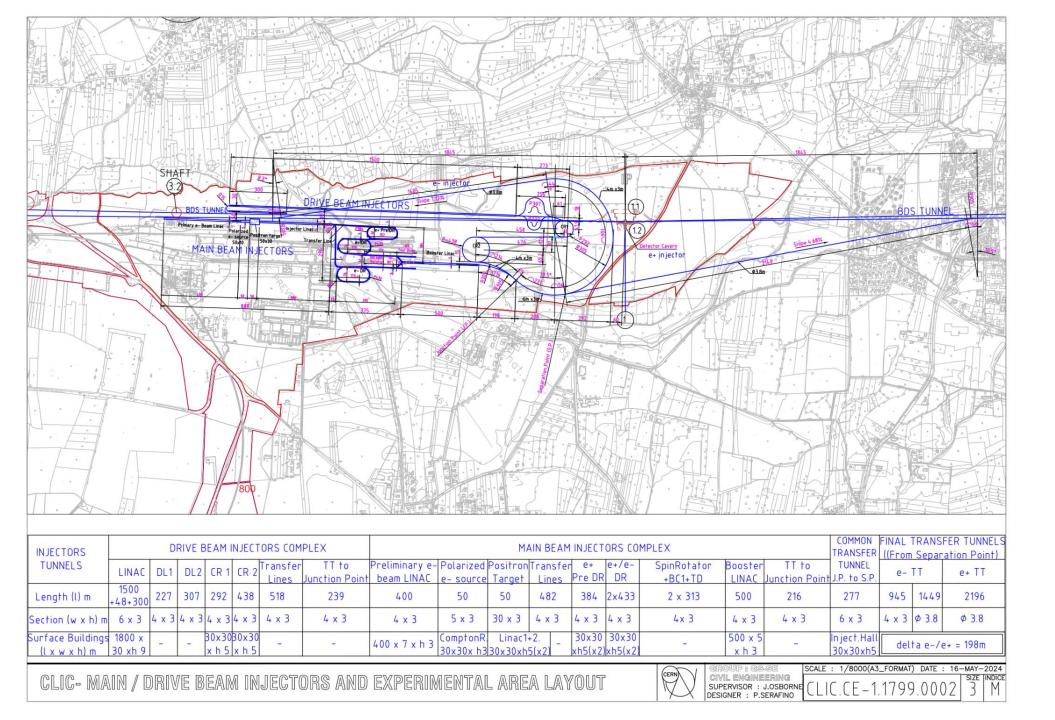


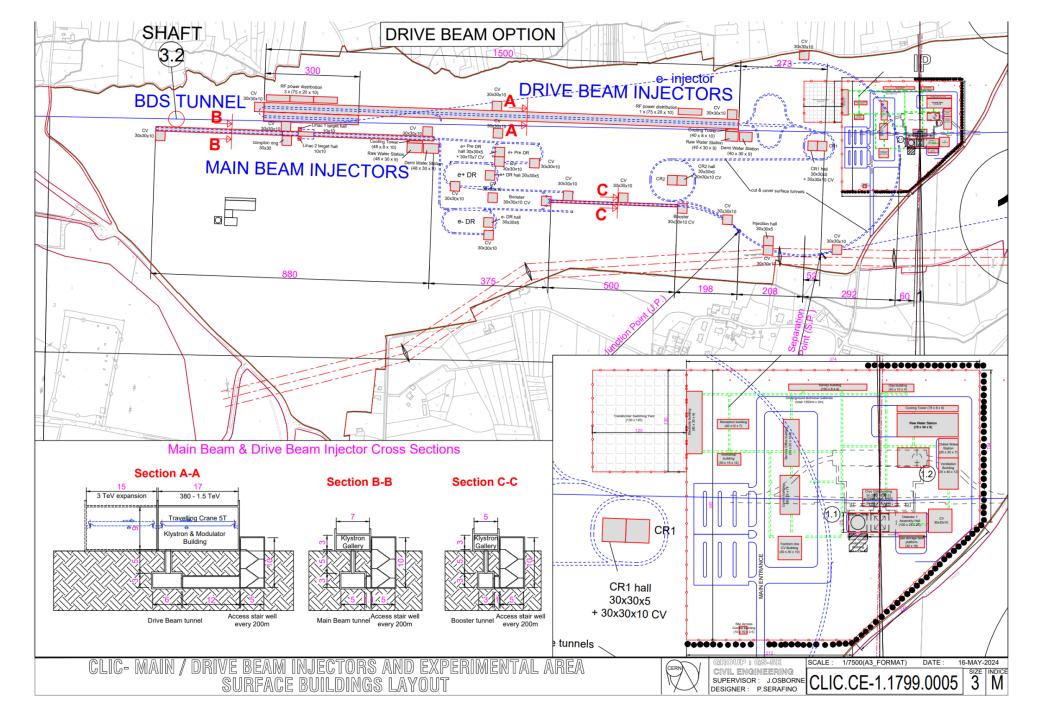
Linear Colliders | CLIC & ILC LCA

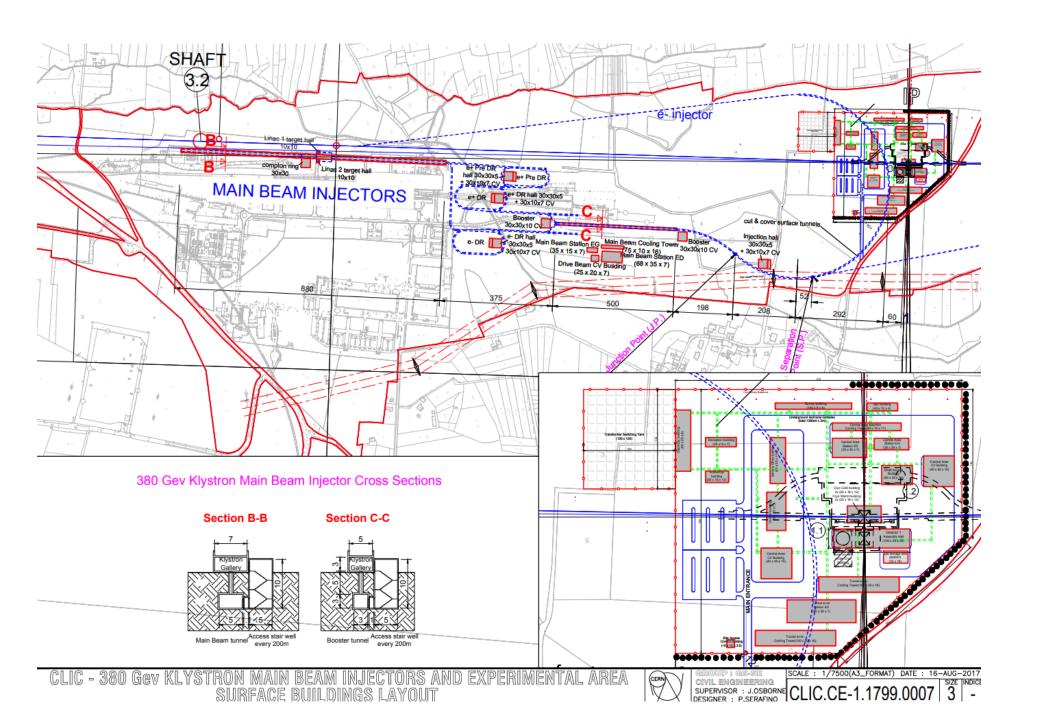
Phase 2: Progress meeting

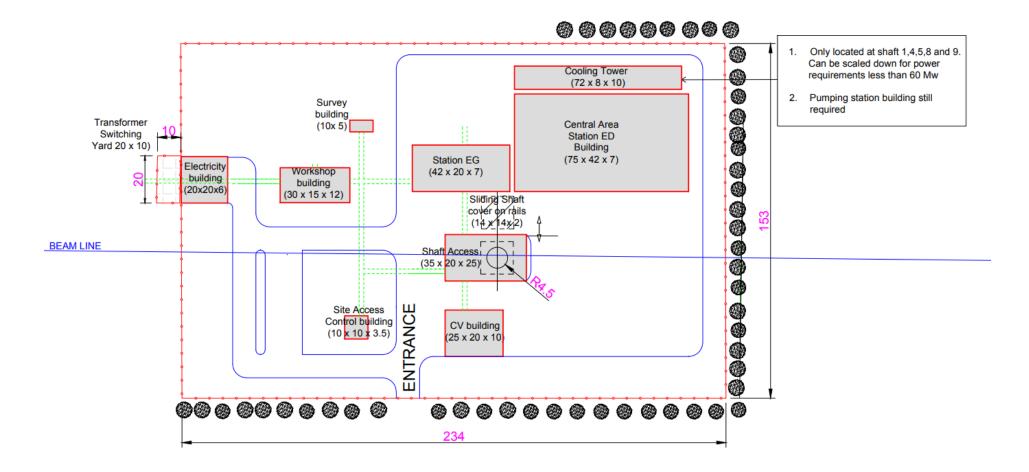
9th September 2024

Agenda


- Programme check-in
- Construction LCA results
 - Injector complex Underground
 - Tunnel service systems
 - Surface buildings
- Machine LCA preliminary results
- Niobium modelling
- AOB

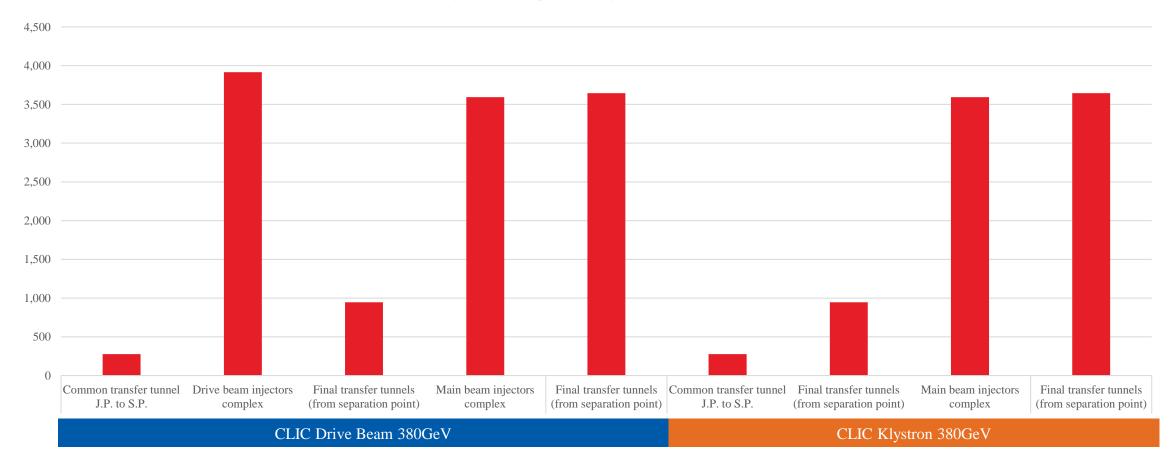

ARUP Programme Receivable 2: Detector high-level Receivable 1: material quantities **Receivable 4:** Tunnel Note: Regular progress meetings are expected, **Receivable 3:** Final machine service especially during inventory analysis phase. Draft machine inventory systems inventory analysis analysis information March September November May July Goal and scope definition Pre-workshop preparation Machine component Inventory analysis Workshop at CERN Impact assessment Collation of data collection template Post-workshop creation responses of data collection Undertake Interpretation Refinement of assumptions, data requirements, template for agreement impact outcome expectations and system boundaries • WLCA reporting, including Phase 1 LCA and dissemination assessment Creation of inventory list of machine Benchmarking and comparison Define LCIA and analyse componentry Environmental impact hotspots and reduction methodology, database opportunities using PAS2080:2023 and tool **CLIC injector complex LCA** Sensitivities analysis LCA of CLIC injector complex Gap analysis for future assumptions refinement Benchmarking and sensitivities CLIC & ILC tunnel service systems LCA Machine component LCA LCA of tunnel service systems Benchmarking and sensitivities **CLIC** injector complex and tunnel service systems LCA **Deliverable 5:** Deliverable 1: Draft **Deliverable 2: Deliverable 3: Deliverable 4:** Summary slide deck Comprehensive CLIC injector complex and CLIC & data collection Final data LCWS2024 WLCA report ILC tunnel service systems LCA template for feedback collection template presentation


3



Construction LCA results

CLIC Drive Beam 380GeV Data hierarchy

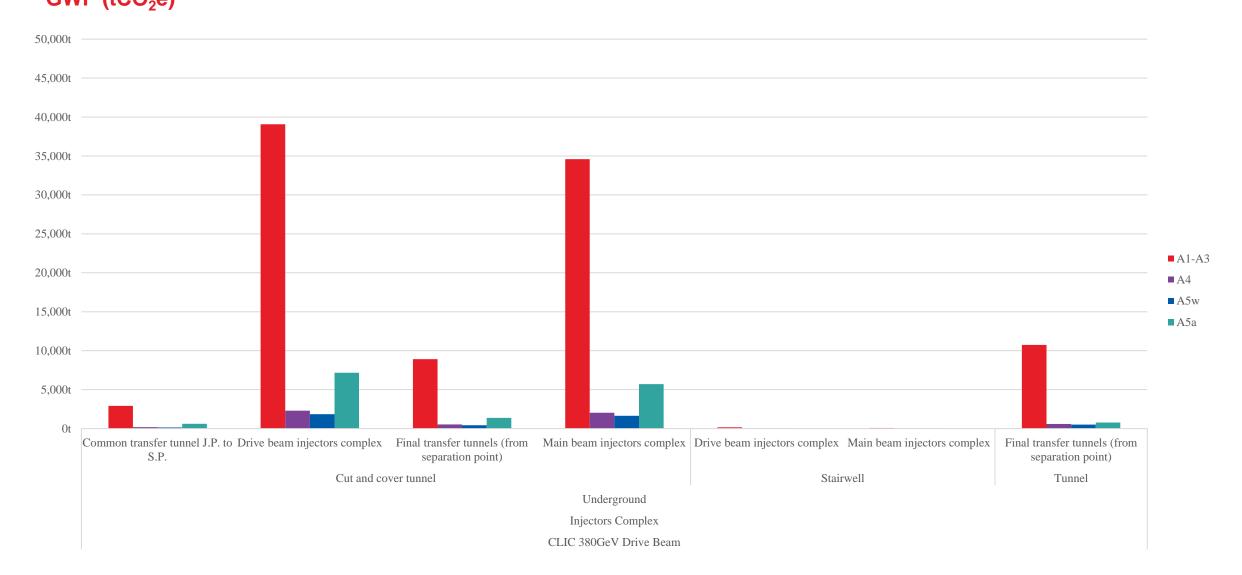

							•	.	
			Underground /					Underground	
System	Sub-system	Components	Surface	Sub-components	System	Sub-system	Components	/ Surface	Sub-components
CLIC 380GeV Drive Beam	-						Common transfer tunnel J.P.	to S.P.	
	Injectors Complex							Underground	
	injectore complex	Drive beam injectors comp	lov					onderground	Transfer tunnel J.P to S.P
		Drive beam injectors comp						o (Transfer tunnel J.P to S.P
			Underground					Surface	
				Linac					Injector hall
				DL1					CV buildings
				DL2			Final transfer tunnels (from s	enaration noint	
				CR1				Underground	
				CR1				Underground	
				Transfer lines					e- TT
									e- TT
				TT to Junction point					e+ TT
				Access stair well every 200m for Linac			Experimental area surface be	uildings lavout	
				Connecting structure between Linac and stairwell				Surface	
			Surface					Ounace	Cite assess sentral building
				Linac surface buildings					Site access control building
				CR1 halls					Transform line CV building
				CR2 halls					Control building
									Service office building
				CV buildings					Detector 1 Assembly hall
				RF power distribution					Gas storage tank platform
				Drive beam CV building					
				Drive beam Station EG					CV
				Drive beam cooling tower					Cryo cold building
				Drive beam station ED					Cryo warm building
									Central IP station EG
				CR1 CV building					Central IP station ED
				CR2 CV building					Central Area CV building
		Main beam injectors compl	lex						
			Underground						Central IP Cooling tower
			0	Preliminary e- beam LINAC					Reception building
				Access stair well every 200m for main beam linac					Workshop building
									Survey building
				Connecting structure between main beam linac and					Gas building
				stairwell					
				Polarised e- source					Electricity building
				Positron target		Shafts			
				Transfer lines			Surface buildings		
				e+ pre DR			•	Surface	
				e+ / e- DR					Electricity building
				SpinRotator+BC1+TD					Workshop building
				Booster LINAC					Survey building
				Access stair well every 200m Booster linac					Station EG
									Cooling Tower
				Connecting structure between Booster linac and stairwell					Central Area Station ED building
				TT to Junction point					Shaft access
			Surface	·					Site access control building
				Preliminary e- beam LINAC surface buildings					
				Compton ring surface buildings					CV building
				Linac1+2 surface buildings					
				e+ pre DR surface buildings					
				e+ DR surface buildings					
				e- DR surface buildings					
				Booster LINAC surface buildings					
				CV buildings main linac tunnel					
				Drive beam CV building					
				Drive beam station EG					
				Drive beam station ED					
				Drive beam cooling tower					
				CV buildings booster tunnel					
				CV buildings booster tunnel					
				•					

CLIC Klystron 380GeV Data hierarchy

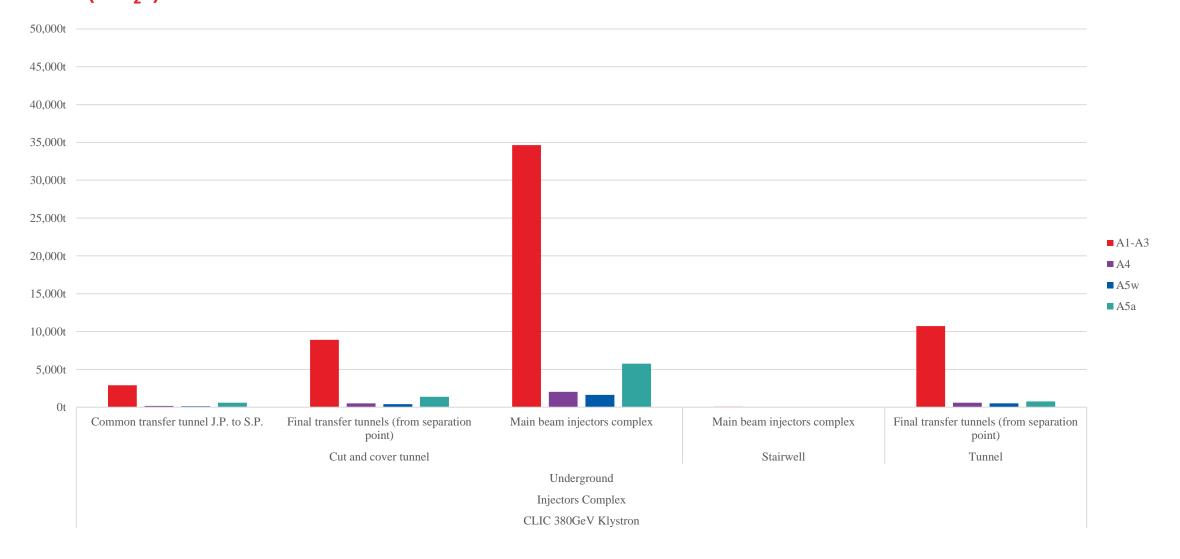
		_	Underground /		_		-	Underground /	
System CLIC 380GeV Klystron	Sub-system	Components	Surface	Sub-components	System	Sub-system	Components Experimental area surface	Surface	Sub-components
	Injectors Comple						buildings layout		
		Main beam injectors complex						Surface	
			Underground	Preliminary e- beam LINAC					Site access control building
				Access stair well every 200m for main beam					Tunnel e+/e- cooling tower Tunnel e+/e- station ED
				tunnel Connecting structure between main beam tunnel					Central area CV building
				and stairwell Polarised e- source					Control building Service office building
				Positron target					Detector 1 Assembly hall Gas storage tank platform
				Transfer lines e+ pre DR					Cryo cold building
				e+ / e- DR SpinRotator+BC1+TD					Cryo warm building Central Area station EG
				Booster LINAC					Central Area station ED Central Area CV building
				Access stair well every 200m Booster linac Connecting structure between Booster linac and					Central Area machine IP Cooling tower
				stairwell TT to Junction point					Reception building Workshop building
									Survey building Gas building
			Surface						Electricity building
				Preliminary e- beam LINAC surface buildings Compoton ring surface buildings		Shafts	Surface buildings		
				Linac1+2 surface buildings			-	Surface	Electricity building
				e+ pre DR surface buildings e- DR surface buildings					Workshop building
				Booster LINAC surface buildings CV buildings					Survey building Station EG
				Booster CV buildings					Cooling Tower Central Area Station ED building
				Main beam station EG Drive beam CV building					Shaft access
				Main beam cooling tower Main beam station ED					Site access control building CV building
		Common transfer tunne	el	· · · · · · · · · · · · · · · · · · ·					-
		J.P. to S.P.	Underground						
			Surface	Transfer tunnel J.P to S.P					
			Sunace	Injector hall					
		Final transfer tunnels		CV buildings					
		(from separation point)							
			Underground	e- TT					
				e- TT e+ TT					
				GT 11					

Length of tunnels (m)

Injector Complex, Length of tunnels (m)



Injector complex - Underground


Inputs

A1-A3			Comment	A5w			Comment
Select a material t	ype for each material.						IStructE carbor
Material	Name	Unit		Equation	$ECF_{A5w} = WF \times (ECF_{A1-A3} + ECF_{A4} + ECF_{C2} +$	ECF _{C34})	guidance
hotcrete	Concrete 20MPa CEMI (Portland cement) Global			Select a waste fac	ctor for each material.		
situ concrete	Concrete 30MPa CEMI (Portland cement) Global						
Precast concrete	Concrete 50MPa CEMI (Portland cement) Global	m3		Shotcrete		0.05	
Steel rebar		kg		Insitu concrete		0.05	
Steel fibre	Reinforcing steel 80% recycled Global	kg		Precast concrete		0.05	
				Steel rebar		0	
\4			Comment	Steel fibre		0	
Select a transport	distance for each material.			Select transport d	istance away from site (C2)		
			Locally	Shotcrete		30km	Assumed
Shotcrete	50	km	manufactured	Insitu concrete		30km	Assumed
			Locally	Precast concrete		30km	Assumed
nsitu concrete	50	km	manufactured	Steel rebar		30km	Assumed
			Locally	Steel fibre		30km	Assumed
Precast concrete	50	km	manufactured	Earthworks		20km	Assumed
			European				
Steel rebar	1500	km	manufactured	Waste processing	and disposal embodied carbon factor (C3 C4)		
			European				
Steel fibre	1500	km	manufactured				IStructE carbor
				Waste factor		0.013kgCO2e/kg	guidance
Select a transport	mode for each material.						0
				A5a			Comments
Shotcrete	Road transport, freight lorry Global						
nsitu concrete	Road transport, freight lorry Global			Diaphragm walls,	excavate, base slab, inverted U unit, backfill		
Precast concrete	Road transport, freight lorry Global						
Steel rebar	Road transport, freight lorry Global			Cut and cover tu	nnel		
Steel fibre	Road transport, freight lorry Global			Electricity		22.4kWh/m3 exca	vation
				Diesel		104.3kWh/m3 exca	

CLIC Drive Beam 380GeV GWP (tCO₂e)

CLIC Klystron 380GeV GWP (tCO₂e)

Tunnel service systems

Inputs

Select a material type for each material.

Material	Name	Unit
Steel pipe	Steel sheet RER	kg
PVC pipe	PVC RER	kg
Steel sheet	Steel sheet RER	kg
Aluminium	Aluminium, sheet Europe	kg
Cable	Cable unspecified GLO	kg

Select a material density

Steel pipe	7800	kg/m3
PVC pipe	1400	kg/m3
Steel sheet	7800	kg/m3
Aluminium	2700	kg/m3

A4

Comment

Comment

European manufactured European manufactured European manufactured European manufactured

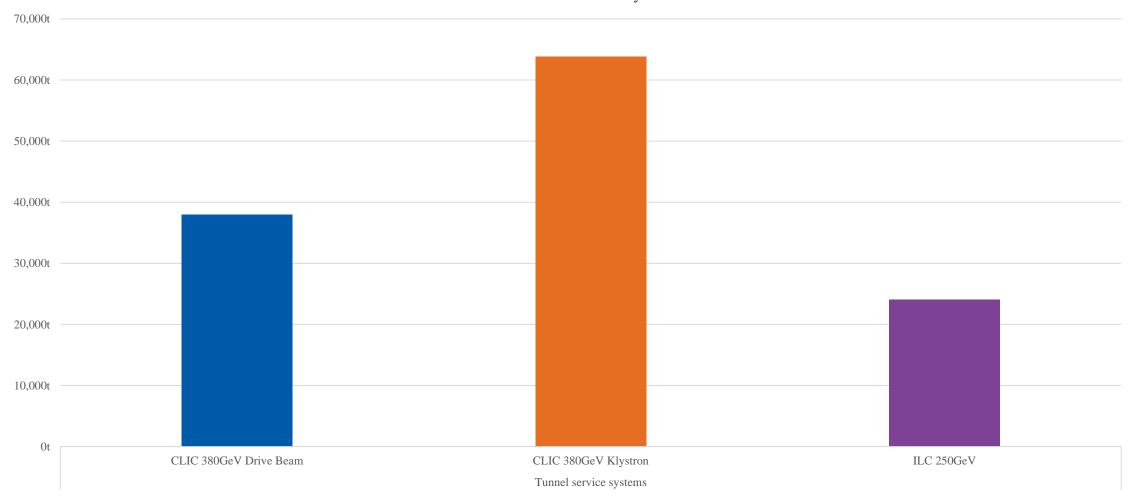
Select a transport distance for each material.

Steel pipe	1500km
PVC pipe	1500km
Steel sheet	1500km
Aluminium	1500km

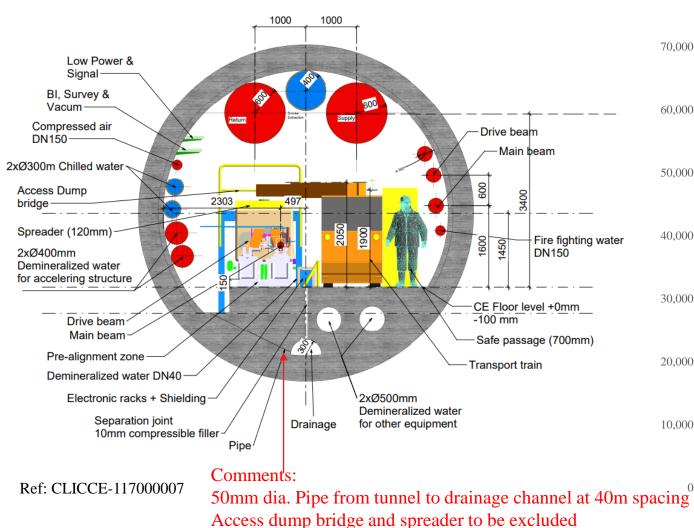
Select a transport mode for each material.

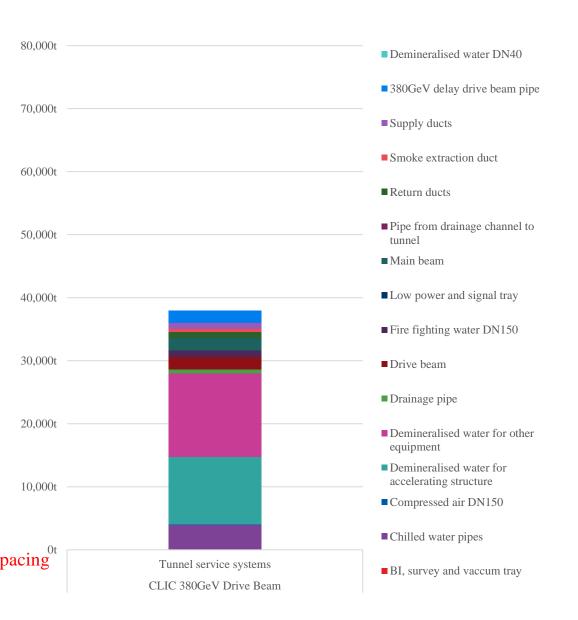
Steel pipe	Road transport, freight lorry Global
PVC pipe	Road transport, freight lorry Global
Steel sheet	Road transport, freight lorry Global
Aluminium	Road transport, freight lorry Global

 <u>A5w</u>	Comment			
Assume negligible as all services are manufacture site.	ed to specification before transported to			
A5a	Comments			


Assume installation is manual labour with minimal plant required therefore assume negligible impact.

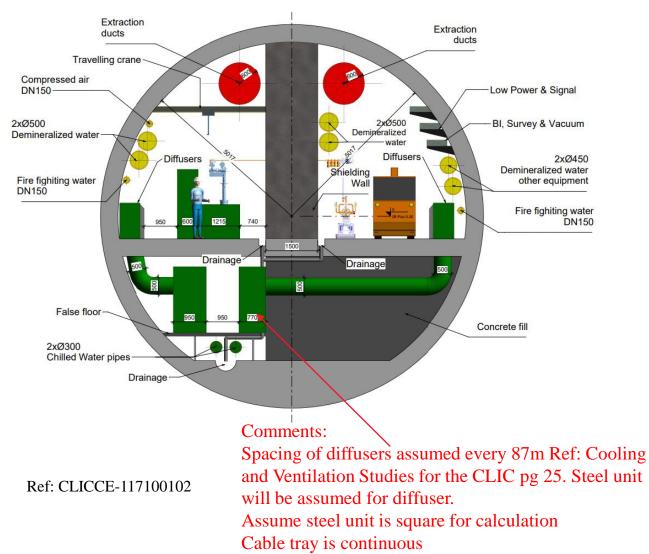
Ref: Technical Prescriptions on Ventilation Installations - Unless otherwise approved by CERN, the contractor shall install all the instruments and accessories following the installation instructions and guidelines provided by the instrument manufacturer.

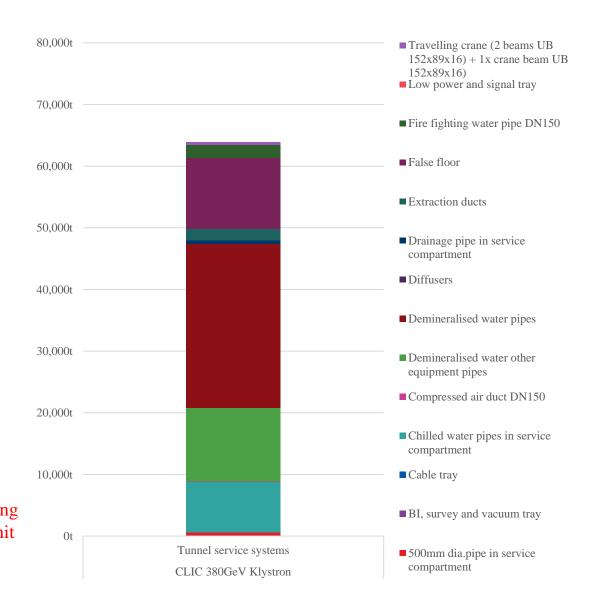

Tunnel service systems comparison GWP (tCO₂e)


A1-A3 Tunnel service systems

CLIC Drive Beam 380GeV

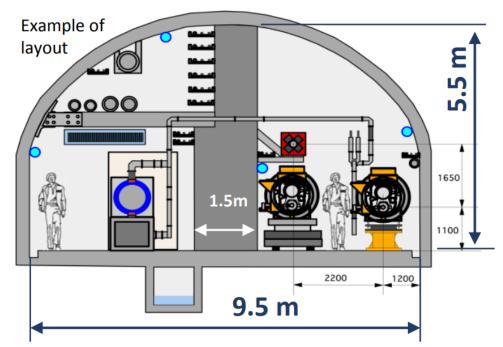
GWP (tCO₂e)



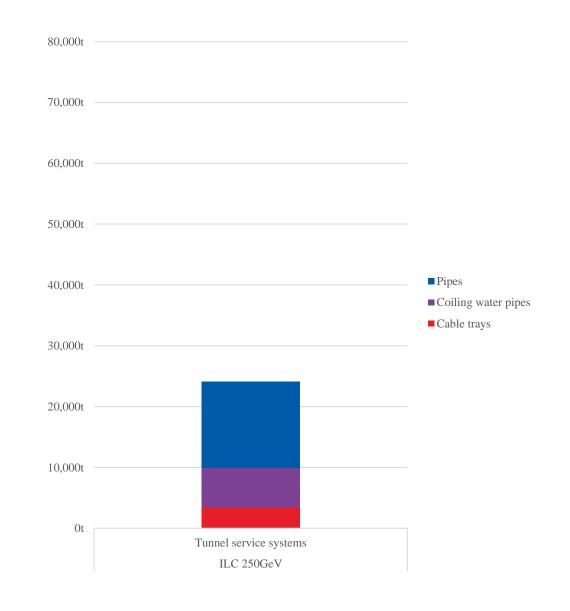


Cable tray is continuous – to be updated

CLIC Klystron 380GeV


GWP (tCO₂e)

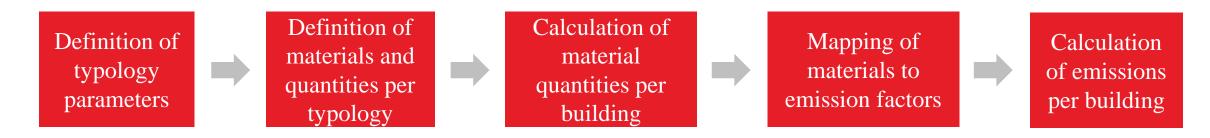
ILC 250GeV


GWP (tCO₂e)

- 66 kV distribution cables
- Colling water pipes
- Fan Coil Units
- Low power and signal cables
- RF klystrons and modulators
- Electric Power Stations

Ref: ILC Civil Engineering Overview pdf

Comments: Exclude cables (check Steffen tunnel service system data) No fan coil units for ILC Exclude ventilation Cable tray continuous

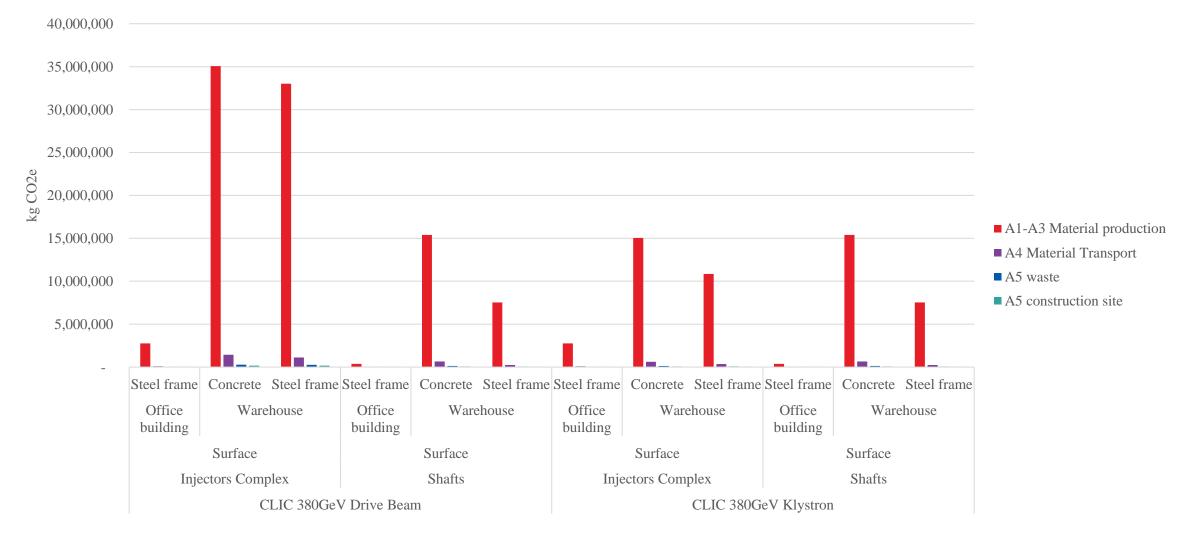


Surface buildings

Building typologies

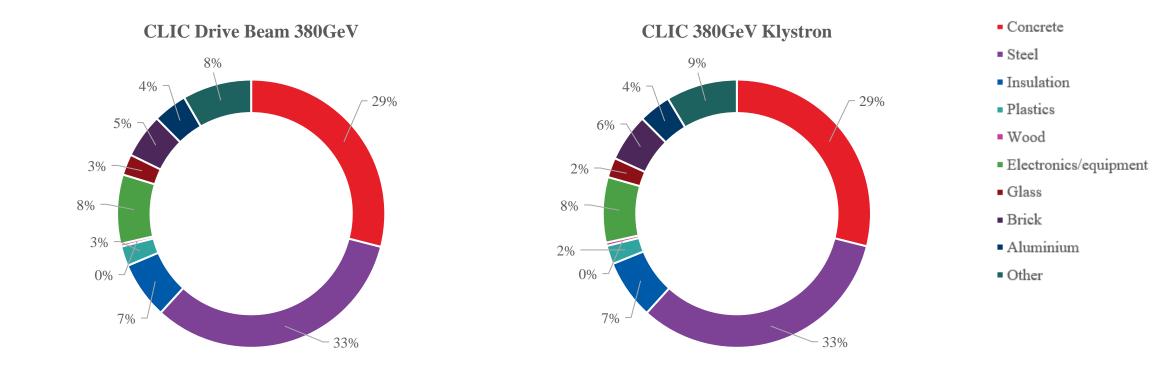
8 building typologies: 3 concrete warehouse typologies, 3 steel warehouse typologies, 2 steel office typologies

archetype_ID	Building Structure	Building Typology	Age	Morphology	GFA, m²	Floors, #	Facade, m ²	Height, m	Columns, m	Heated?
SW_nsq	Steel frame	Warehouse	New	squat	1000	1	680	6.3	176	no
SW_nst	Steel frame	Warehouse	New	stocky	1000	2	1100	13	353	yes
SW_nsl	Steel frame	Warehouse	New	slender	800	1	2880	25	578	yes
CW_nsq	Concrete	Warehouse	New	squat	1000	1	680	6.3	202	no
CW_nst	Concrete	Warehouse	New	stocky	1800	2	1350	13	403	no
CW_nsl	Concrete	Warehouse	New	slender	800	1	1040	10	245	no
SO_nst	Steel frame	Office building	New	stocky	2500	2	875	7	216	yes
SO_nsl	Steel frame	Office building	New	slender	100	1	120	3.5	32	yes

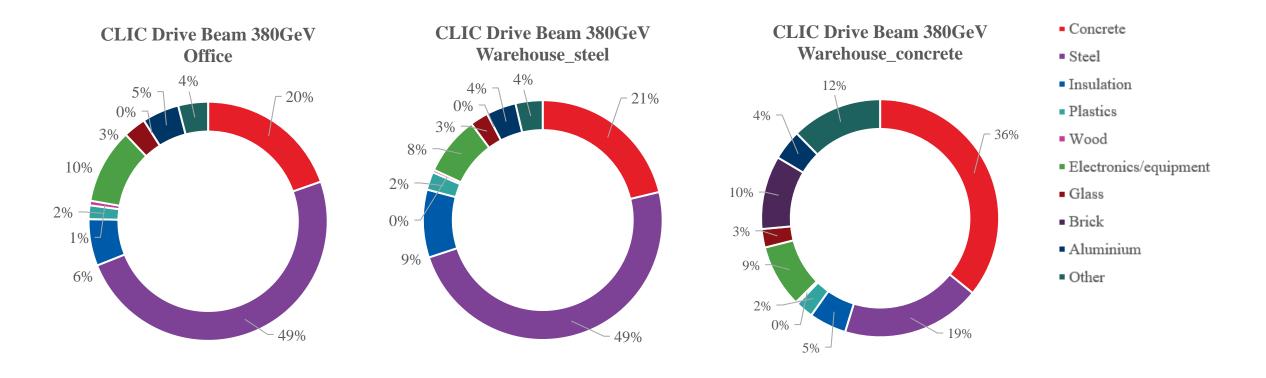


Materials and material mapping

	A1-A3 Material production	A4 Transport	A5 W	aste at construction site
Material	Mapping material	Distance (km)	Waste factor	Mapping waste
Concrete, low-strength	Concrete 20MPa CEMI (Portland cement) GLO	60	4%	Inert waste CH
Steel rebar	Reinforcing steel 80% recycled GLO	370	4.85%	Scrap steel CH
Concrete, normal-strength	Concrete 30MPa CEMII/A-S (6-20% blast furnace slag) Global	60	4%	Inert waste CH
Structural steel	Reinforcing steel 60% recycled content RER	370	3%	Scrap steel CH
Insulation, EPS	EPS RER	430	4%	Waste polystyrene CH
Plastic membrane	Fleece PE RER	430	10%	Waste plastic mixture CH
Mortar	Mortar Light CH	110	13%	Inert waste CH
Door, wood	Door Wood RER	350	0%	-
Paint	Alkyd paint Water-based RER	470	10%	Waste paint CH
Gypsum board	Gypsum plasterboard CH	60	12.50%	Waste gypsumboard GLO
Insulation, glass wool	Glass wool insulation CH	60	8%	Waste mineral wool CH
Sandwich panel	Sandwich panel 200 mm RER	430	15%	Waste sandwich panel CH
Door, steel	Door Steel RER	350	0%	-
Window, triple glazed and wood-alu frame	Window wood-metal frame, triple glazed RER	380	0%	-
Steel sheet	Steel sheet RER	370	3.30%	Scrap steel CH
Ceramic tile	Ceramic tile CH	320	10%	Inert waste CH
Vinyl flooring	PVC RER	430	10%	Waste plastic mixture CH
Cable	Cable unspecified GLO	320	1%	Used cable GLO
Air handling unit	Air handling unit 720 m ³ /h RER	320	1%	Used blower and heat exchange unit central 600-1200 m3/h CH
Duct, steel	Steel duct DN 125 mm RER	370	6%	Scrap steel CH
Pipe, PE	Polyethylene pipe DN 75 mm RER	370	6%	Waste plastic mixture CH
Elevator	Elevator, hydraulic GLO	320	0%	-
Steel, unalloyed	Steel, unalloyed RER	320	1%	Scrap steel CH
Wood, lath	Wood lath softwood CH	220	17.90%	Waste wood CH
Polyamide	Polyamide RER	430	10%	Waste plastic mixture CH
Clay brick	Clay brick RER	60	5%	Waste brick CH
Concrete block	Autoclaved aerated concrete block CH	60	7.50%	Inert waste CH
Concrete tile	Concrete tile CH	60	0%	Inert waste CH



Surface buildings carbon per typology



Surface buildings carbon per material (A1-A3)

Surface buildings carbon per material (A1-A3)

Results summary

tunnel

service

systems

CLIC Klystron 380GeV

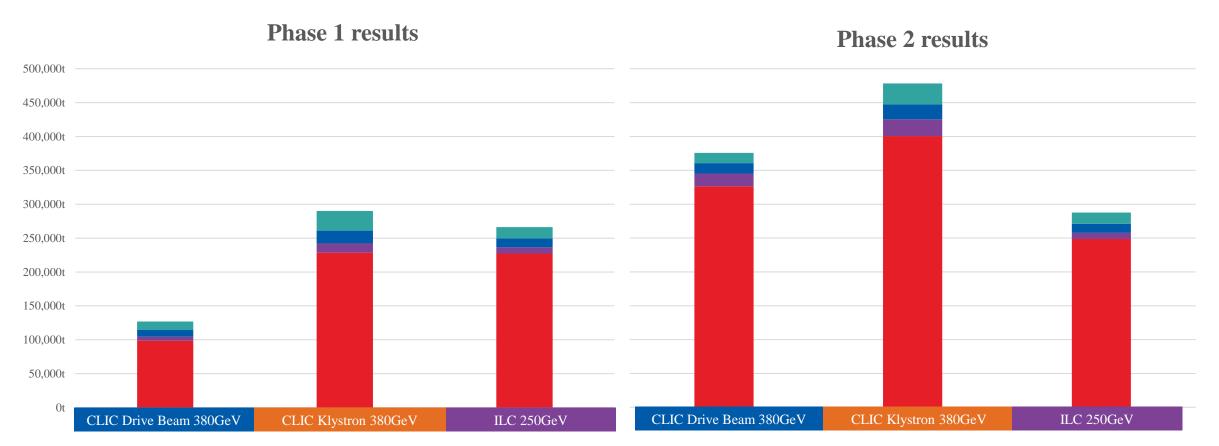
CLIC DB & CLIC KL summary

CLIC Drive Beam 380GeV

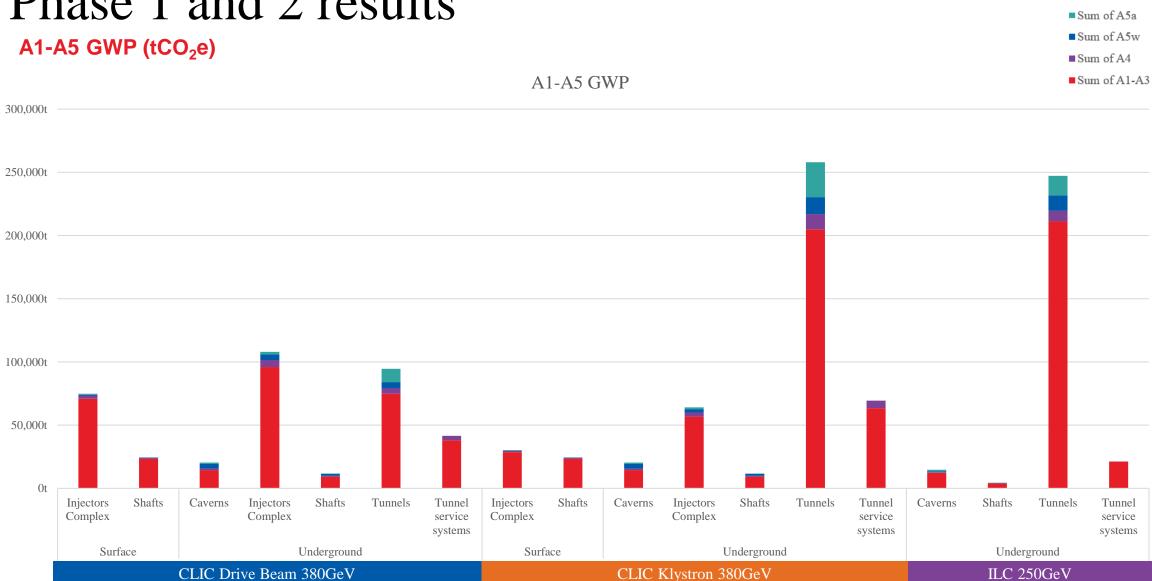
A1-A5 GWP (tCO₂e)

100,000t 90,000t 80,000t 70,000t 60,000t 50.000t 40,000t A1-A3 ■ A4 30,000t A5w 20,000t A5a 10,000t 0t Warehouse Warehouse Warehouse Office Tunnel Office Tunnel Office Warehouse Tunnel Stairwell Tunnel Cut and Stairwell Cut and Office building building cover tunnel building building cover tunnel Underground Surface Surface Underground Surface Underground Surface Underground Injectors Complex Shafts Main linac Injectors Complex Shafts Main linac

tunnel


service

systems


A1-A5 GWP

Phase 1 and 2 results A1-A5 GWP (tCO₂e)

Phase 1 and 2 results

Machine componentry

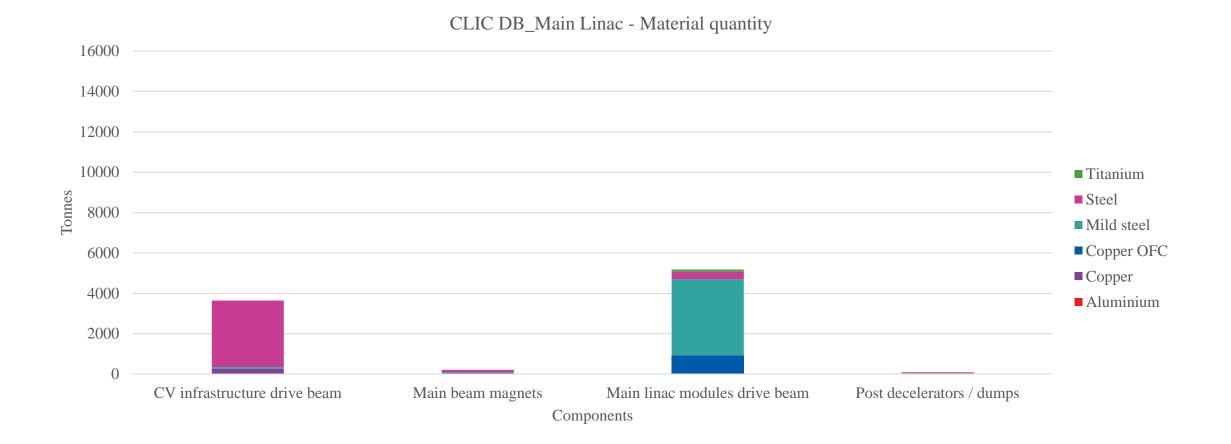
Material modelling

Example: CLIC 380GeV Klystron

A1-A3 Material production

Components	Material	Mapped material	Processing step	Origin	Note from CERN
Main linac modules klystron	Steel	Steel, stainless, type 304 Europe	Average metal working, stainless steel	Europe	high quality steel 304/316 L
Main linac modules klystron	Copper OFC	Copper, high grade Global	Average metal working, copper	Europe	
Main linac modules klystron	Aluminium	Aluminium, wrought alloy Global	Average metal working, aluminium	Europe	
Main linac modules klystron	Titanium	Titanium Global	Average metal working, metals	Europe	
Main linac modules klystron	Mild steel	Steel, unalloyed Europe	Average metal working, steel	Europe	Supports
Main beam magnets	Steel	Steel, unalloyed Europe	Average metal working, steel	Europe	Magnet steel
Main beam magnets	Copper	Copper Global	Average metal working, copper	Europe	
Main beam magnets	Mild steel	Steel, unalloyed Europe	Average metal working, steel	Europe	Supports
Modulators/klystrons/waveguides	Steel	Steel, stainless, type 304 Europe	Average metal working, stainless steel	Europe	high quality steel 304/316 L
Modulators/klystrons/waveguides	Copper	Copper Global	Average metal working, copper	Europe	only 500 t are OFC copper
Modulators/klystrons/waveguides	Copper OFC	Copper, high grade Global	Average metal working, copper	Europe	
Modulators/klystrons/waveguides	Mineral Oil	Lubricating oil Global		Europe	transformer oil for isolation
CV infrastructure klystron	Steel	Steel, unalloyed Europe	Sheet rolling, steel	Europe	water pipes and venitlation ducts
CV infrastructure klystron	Copper	Copper Global	Wire drawing, copper	Europe	magnet cables
CV infrastructure klystron	Mild steel	Steel, unalloyed Europe	Sheet rolling, steel	Europe	cable trays, sheet metal

Material modelling


A3 Waste at production site

Material	Treatment	Location
Mild steel, stainless steel	Average market for steel waste	Switzerland
Copper, Copper OFC	Average market for copper waste	Switzerland
Aluminium	Average market for aluminium waste	Switzerland
Titanium	Average market for steel waste	Switzerland
Mineral oil	Waste mineral oil	Switzerland

A4 Transport

Average distance 750 km (CERN input: 500-1000 km), truck, empty return. Assumed EURO 6 truck, 16-32 metric ton

Material analysis, CLIC Drive Beam 380GeV

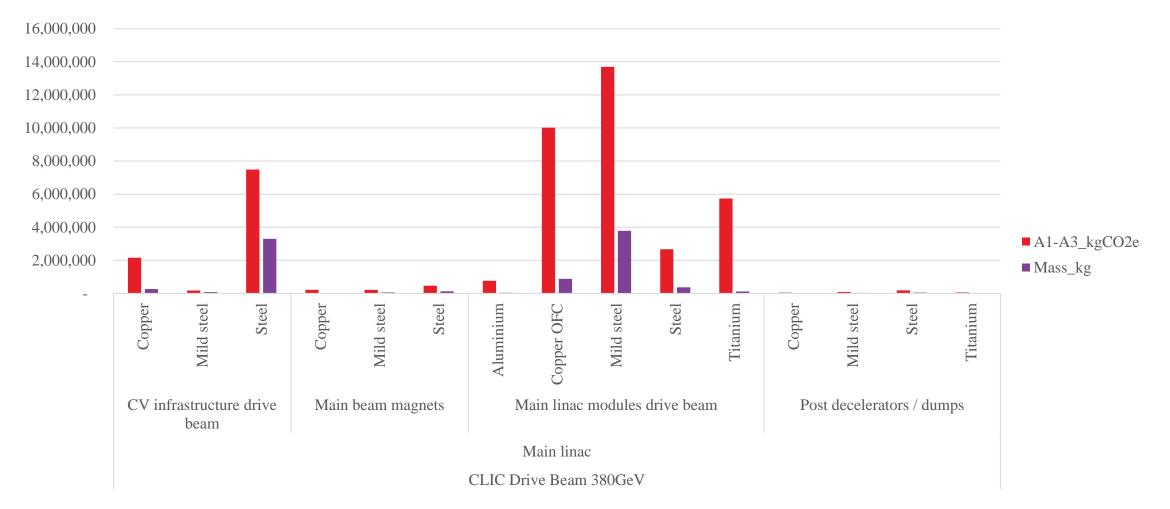
PRELIMINARY RESULTS

Carbon results, CLIC Drive Beam 380GeV

CO2e

kg

CLIC DB Main Linac – A1-A4 carbon 35,000,000 30,000,000 25,000,000 20,000,000 15,000,000 A1-A3 Material production ■ A4 Material transport 10,000,000 ■ A3 Material waste 5,000,000 CV infrastructure drive beam Main beam magnets Main linac modules drive Post decelerators / dumps beam


CLIC Drive Beam 380GeV

Main linac

Carbon results, CLIC Drive Beam 380GeV

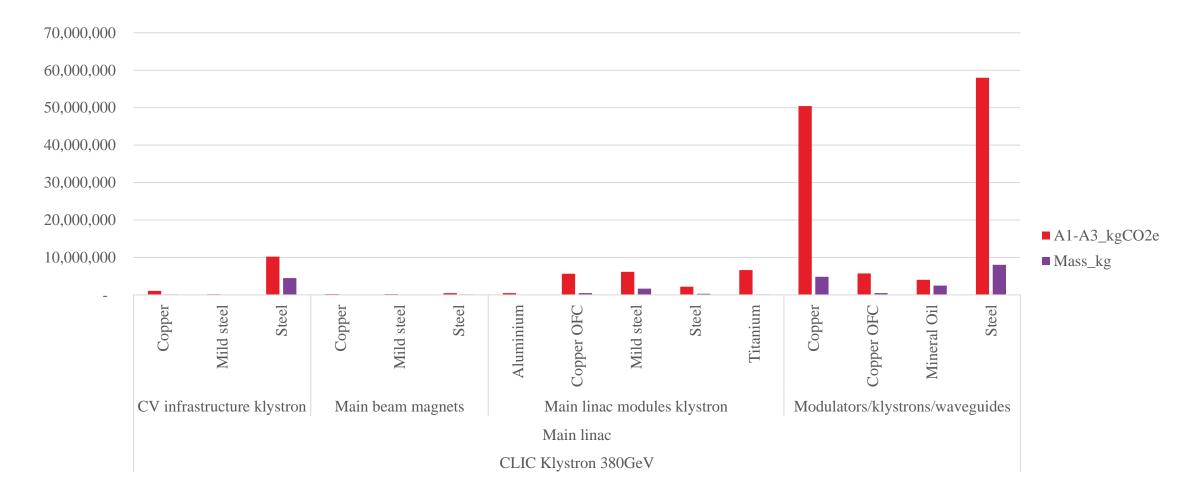
Material analysis, CLIC Klystron 380GeV

16000 14000 12000 10000 Tonnes 8000 6000 ■ Titanium 4000 Steel 2000 ■ Mild steel 0 Modulators/Hystrons/WaveBuides CV infrastructure kystron Main line modules kystron Mainbeammagnets Copper OFC ■ Copper Aluminium

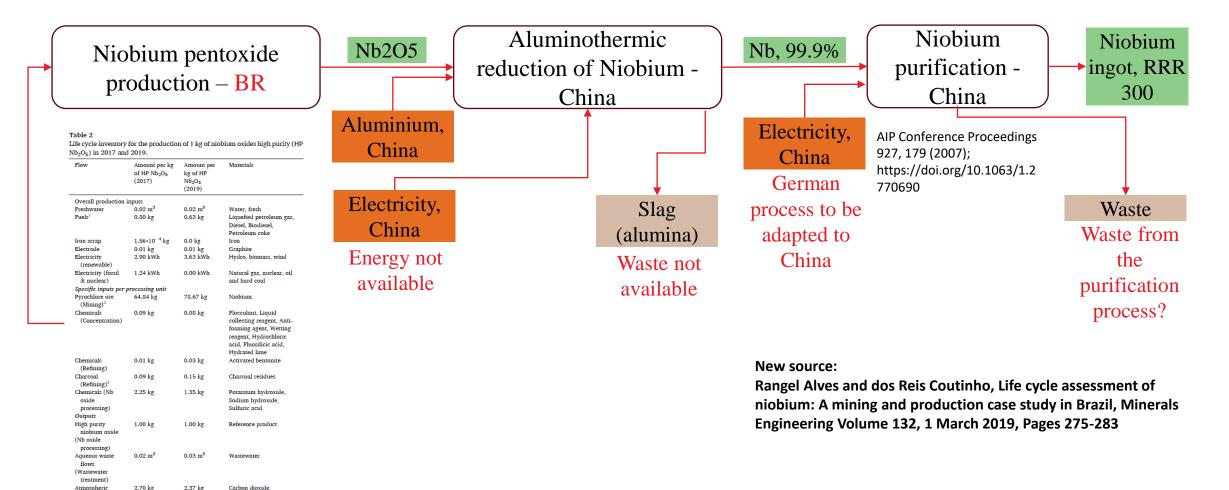
CLIC KL_Main Linac - Material quantity

Components

Carbon results, CLIC Klystron 380GeV


PRELIMINARY RESULTS

	1 40 000 000		CLIC KL_Main Lin	nac – A1-A4 carbon		
	140,000,000					
	120,000,000					
	100,000,000					
	80,000,000					
	60,000,000					Interial production
						rial transport
	40,000,000				A3 Mate	rial waste
	20,000,000					
	_					
		CV infrastructure klystron	Main beam magnets	Main linac modules klystron	Modulators/klystrons/waveguides	
		Main linac				
			CLIC Klys	stron 380GeV		



Carbon results, CLIC Klystron 380GeV

PRELIMINARY RESULTS

Niobium modelling

Journal of Cleaner Production 348 (2022) 131327

Particulates Sulfur

dioxide. Lead

emissions

production

(overall

Questions/open points

- For Modulators/klystrons/waveguides of CLIC Klystron, a note in the data collection says that "only 500 t out of 5358 t are OFC copper", the remaining amount is assumed to be standard copper. Is it correct?
- Metal materials from the database have a default recycled content, shall we assume that this applies to the machine components when material purity is not specified?

- Given the contribution to results, refine model of Copper OFC (current ecoinvent process selected: "electrorefining of copper anodes to produce high grade copper cathodes").
- Titanium waste treatment: missing in ecoinvent
- Review material mapping assumptions
- Review Niobium assumptions and inputs/outputs quantities

Next steps

- Clarifications on tunnel service systems
- Update of carbon factors with newer SimaPro and ecoinvent database version
- Finalise summary slide deck of construction LCA results
- Continue with machine componentry LCA

