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= Start in the late 90s/early 2000s

= |nterest in Neutrino Factory and Muon Collider

= (Clear that muon capture and cooling were big challenges
= Requirement for challenging compact lattices

= Handling for multiple particle species
" e.g. pions and muons
= Simulation codes had to handle
= Qverlapping fields
= Decays
= Materials
= Very brief/potted history of lattice development
= Apologies for missed things
= Qverview of modelling considerations

= Some important experimental results

& Science & Technology Facilities Council



" CERN design - capture

The Study of a European Neutrino Factory Complex, Gruber et al. 2002
140 cm unit length
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Fig. 5.9 Sketch of a 44 MHz cavity with solenoid
-Eo[MeV]
Tab. 5.1 Components of the 40-80 MHz scheme and their characteristics %

Decay Rotation  Cooling I Accel Cooling I1 Accel
Length [m] 30 30 46 32 112 ~450
Diameter [cm] 60 60 60 60 30 20 110 -

[deg@44MHz]

B-field [T] 1.8 1.8 2.0 2.0 5.0 5.0 T .
Frequency [MHz] - 44 44 44 88 88-220
Gradient [MV/m] - 2 2 2 4 4-10
Kinetic energy [MeV] - 200 200 200-280 280-300 300-3000




l CERN design - cooling
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The Study of a European Neutrino Factory Complex, Gruber et al. 2002 / c ollulgg Ocrc’;'t'fjoerz
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Fig. 5.4 Cooling cell at 44 MHz, total length 4.24 m
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CERN design - code s

Collider
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PATH - A LUMPED-ELEMENT BEAM-TRANSPORT SIMULATION PROGRAM WITH SPACE CHARGE*

John A, Farrell, Los Alamos National Laboratory
Los Alamos, New Mexico B7545, USA

Summar

PATH is a group of computer programs for simulating charged-particle beam-

transport systems. It was developed for evaluating the effects of some aberrations

= Simulated using PATH
= Matrix code (to 3™ order)

= With pion decay
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UK design
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SolenoidsTol5cm pion to muon decay channel
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2 Phase rotators
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l Beam on target:
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900 MeV £ 7% momentum

Muon Capture Schemes for the Neutrino Factory, Stephen Brooks, D.Phil. thesis

31.4]
Pt

= (Cooling-less design

9% [ran engffs 10,4018k
& =0.80676 V. [rectanghis

& Science & Technology Faci —— —— | — .




Jun-05 jun-13  Jun-21 Jun-29
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Simulation using muonl

= Homebrew code

Massively distributed optimisations
= Tracking through fairly realistic field maps

Science & Technology Facilities Council

= SIS

International
UON Collider
Collaboration



FS2 design

S
= Advanced cooling lattices developed “Feasibility Study 2"
= “SFoFo” lattice
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US design - lattice
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= Introduce complicated lattice concepts e.q. intricate
solenoid arrangements

= Nb: basis of MICE design
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US design
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= Simulation done in ICOOL
= Based on heavily modified version of Geant3
= Analysis tool ecalc9f
= Tracking done by numerical integration through space
= E.g. RK4
= Custom models for physics processes

= Dedicated model for passage of particles through liquid
hydrogen
= Based on tracking individual scatters and tabulating results
= Several models for solenoids and multipoles

= Supports elaborate geometries (e.g. wedges, etc)
= See talk by Scott
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FS2a
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= FS2 design was considered too elaborate and simplified to so-
called Feasibility Study 2a design

= Ring lattices were investigated but considered too difficult
= FS2a lattice and ring concept merged into “rectilinear” concept
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Enter Geant4
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= Geant4 adopted as a useful tool sometime early 2000s
= Daniel V Elvira’'s “BeamTools” package
= Simulation of common beam elements e.g. RF, solenoids, dipoles ...
= Used by MICE project to build a simulation of the experiment
= Hard coded (C++) lattice description “G4MICE"” package
* |ncludes provision for reconstruction etc
= Adopted into G4ABeamline
= Convenient user interface - soft-coded lattice files
= Rather versatile lattice geometry building tools
= Convenient visualisation & GUIs
= Talk by Dan
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Collective effects

Space charge simulated using WARP models

= Binary? interface between WARP and ICOOL
= Good agreement for low beam current

Influence of space-charge fields on the cooling process of muon beams,

Stratakis et al
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= |IMCC is now looking at two codes for simulations

= BDSIM widely used for beamline simulations
" |nteresting mix of matrix simulations and particle tracking

= Talk by Paul & Rohan

= RFTrack linac simulation tool
= Support for some collective effects

= Talk by Bernd
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Models - Challenges

Several “novel” challenges of simulation tools

Overlapping field elements & long fringe fields
Slightly exotic RF cavity arrangements
Dipoles

Passage of particles through matter
= Energy loss
= Scattering

Decays
Multiple and exotic particle species

(Lately) collective effects
= Space charge
= Beam loading

& Science & Technology Facilities Council
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Models - Solenoid

= Solenoids are a key lattice element
= Typically a few different options for solenoid models
= Analytical solution for “Block” conductor
= Current sheet model
= Maxwellian expansion
" Field maps

& Science & Technology Facilities Council



Current sheet model
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= Semi-analytical solution exists for an infinitely thin sheet of
current

= |n the limit that n sheets - infinity, becomes a block conductor

A schematic of the sheet model is shown in Figure 6.2. The field from a single

current sheet of length 2L and radius a at some point (r, z) is given by [62] [63]

) B.(r,z) = by(r,z+ L) —b,(r,z — L), (6.1)
B.(r,z) = b(r,z—=L)—=b.(r,z+ L), (6.2)
! where
B pol'  za ;s (e —r1) o

b(rz) = = e [K(k)+ 5, ((k.¢) K(k)],  (63)
bo(r,z) = u-ofé[g(}{(k) — E(k)) — B K (k)]. (6.4)

Uzn ™ T

Here
t/n B dar 5
i = (a+71)%+ 2% (6:5)
t/2n ¢ = yfla+7)?2+22, (6.6)
dar

c = - @t (6.7)

and K, F and II are complete elliptic integrals.
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Current sheet model (2)
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= But note that there is a field discontinuity very close to the

= Convergence is reasonably rapid
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Field map
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= Elliptical integrals can be slow to calculate
" Field calculation CPU time goes as N(sheets)
"= For many thousands of muons this can be slow
= An optimisation is to:
= Write field map
= 2D because rotational symmetry
= Do alook up at run time
= Quick
" Introduces a source of error (field map granularity)

107 G4MICE, MICE lattice

10-5 I L1 a1l L Lol ] 1ol
o 102

10
Spacing [mm]
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Maxwellian expansion n ;

= |f we know the Bz on axis, can approximate the field off-axis
= Assumes Maxwell’s laws to get a recursion relation

From V x B_: we have
daBs = 035
0,0.B, = 0>B,
and from V.B , we have

B,
0,By +—" +0:B. =0

Bza-r’-Bf' + + 8§Bz = O
P
substituting curl into div
0,B.
9B, + +0°B, =0
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Maxwellian expansion n

= Standard accelerator thing
"= Nb: problem in SY Lee “Accelerator Physics”

Try writing fields as a series expansion

B = Z a;(z)r

1=0
B.= Zbi(z)’ri
2=0
a; = — s 0.b;_1(2)
3 ?:+ 1 zYi—1 g

]‘ 2
biya(z) = — maz bi(z)
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RF

= RF cavities are typically assumed to be standing EM waves
= Cooling systems - typically cylindrical cavity

= |f the cavity is a perfect cylinder, field can be calculated
analytically:

A. Wolski, Beam Dynamics in High Energy Particle
Accelerators, Imperial College Press

= For some cooling systems, field can be assumed to follow
TMO010 mode (Tmnml)

= Assumes cavity is a perfect cylinder
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More realistic RF l

= For greater realism, one can use 2D field map
= RF designers don’t like parallel walls
= RF designers don’t like sharp corners

= Cylindrical symmetry is a very good approximation
= Anisotropy near e.g. power couplers is negligible near the beam

= Ps:itis also possible to use a field expansion like solenoids but
| don’t think any of the cooling codes do this

MICE  »
Cavity .
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Field map granularity

Granularity in the field map can again introduce errors
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TMO10 vs field map
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= Practically the difference can be small

N
o
o]

MICE lattice
o field map
+ TMO010
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Demonstrator RF structure
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= Note that an RF structure like this may have bigger effect

= Windowless
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Dipoles (quads, etc)
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No analytical model exists for dipoles and multipoles
Either:

"= Use a field map generated in an external code (OPERA, COMSOL,
etc)

Or:
= Use a field expansion based on Maxwell

= Typically field on axis is assumed to follow a “Enge” function
By = CnO(d)

- GO
1+ exp[P(d(2))]’

d 7\ 2 2\ k-1
P(d)ZCO+Cl(A)+C2(A) +---+CA-—1(A)

Crsnfz)

To first order this is tanh function
Find coefficients C; by fitting to existing dipoles

For suitable C;, lambda, derivatives are continuous and
exponentially tend to 0 at high d

= For complex d, get trigonometric functions appearing
= Ruihu lattice



Materials
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= |n materials, two main processes
= Multiple Coulomb scattering
= |onisation energy loss
= Multiple Coulomb scattering (MCS)
= Muons strike atomic nucleus and scatter
= Mostly causes random kicks transverse to particle motion
= Does not change energy but tends to increase emittance
= Jonisation energy loss (dE/dx)
= Muons strike atomic electrons and ionise them
= Mostly causes kicks along particle motion
= Does not increase emittance but absorbers muon energy
= |Leads to a reduction in normalised emittance

& Science & Technology Facilities Council



Multiple Coulomb Scattering
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= Two data sets for MCS in the region of interest
= MuScat - mid 2000s measurement at TRIUMF
= MICE - mid 2010s measurement at RAL

S2 scintillator

TINA
Sci-Fi tracker

LH; target

S1 scintillator
V1

MICE Upstream Spectrometer Solenoid Focus Coil Downstream Spectrometer Solenoid
TOFO0 TOF1 TOF2
Ckov Ckov = = = — — | | = = =
A B
0 1m
! Upst Track D t Track KL EMR
— —— . X
Diffuser pstream lracker LiH Absorber ownstream Tracker
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MuScat

= Simulation showed early version of Geant4 (6.1) had big
discrepancy especially in liquid Hydrogen
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D. Attwood et al, Nuclear Instruments and Methods in Physics Research B 251 (2006) 41-55
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Fig. 21. The projected scattering angle distribution in data and simulation Fig. 22. The projected scattering angle distribution in data and simulation
for thick lithium, both targets combined. for 109 mm of liquid Ho.
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MICE

= Later versions of Geant4 (9.6) show improvement
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M. Bogomilov et al, Phys.Rev.D 106 (2022) 9, 092003
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Events per 2.6mrad

Events per 2.6mrad

MICE (IH2)

= Also |[H2
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Gavriil Chatzitheodoridis, Analysis of multiple Coulomb scattering of muons in liquid hydrogen, PhD Thesis (Strathclyde/Glasgow)
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Energy loss
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= Typically muon cooling is done around minimum ionising
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Energy straggling
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= Random processes in energy straggling

= Note that everyone uses mean energy loss
= But mean energy loss is ill-defined

Energy loss [MeV cm?/g]
1.2 1.4 1.6 1.8 20 22 24

————— ———————— 1.0
]
1 10 GeV muon
150 1.7 mm Si Mo(A)/Mo() _
I 7108
— ~~
M {(A)M (=) 106 %
| =
0.2
A\ /—Landau—Vavilov 7] 0.4 E’“‘
N4 — Bichsel (Bethe-Fano theory)
102
: : 1 0.0
0.6 0.7 0.8 09 1.0

Electronic energy loss A [MeV]
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<0ofing Tattices

= Challenge now to model this!
= Qverlapping solenoids with RF, dipoles
= Complicated intersecting material geometry

= Difficult beam dynamics

& Science & Technology Facilities Council



! Extra Info

C. T. Rogers
Rutherford Appleton Laboratory



Collective Effects
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= Two collective effects that are of immediate concern

= Space charge

= Particle beam tries to self-annihilate due to internal charge of the
beam

= Beam loading
= Particle beam induces E-field in RF cavities

= This causes the tail of the beam to experience a different voltage
than the head of the beam

= QOther collective effects may exist

& Science & Technology Facilities Council



Space charge
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= Aim to solve Poisson equation for an evolving charge
distribution (rho)

V¢ = —p/eo,

= Solution looks like
f,b(x,y,z):fffdx’dy’dz’p(x’,y’,z’)G(x—x",y—y’,z—z’),

= Discretising
M, M, M,
¢’£,j,k — hxh}-'hz 2 2 ylPf’,j’,k’GE—.i’,j—j’,k—k’a
i'=1 j'=1k'=1
1

Vi +v2 + w2
Adelmann et al, OPAL a Versatile Tool for Charged Pa@ccelerator Slmulatlons arX1V 1905 06654v1

SIS

Gu,v,w) =
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