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 Start in the late 90s/early 2000s
 Interest in Neutrino Factory and Muon Collider
 Clear that muon capture and cooling were big challenges
 Requirement for challenging compact lattices
 Handling for multiple particle species

 e.g. pions and muons
 Simulation codes had to handle

 Overlapping fields
 Decays
 Materials

 Very brief/potted history of lattice development
 Apologies for missed things

 Overview of modelling considerations
 Some important experimental results

Origins



  

CERN design - capture
The Study of a European Neutrino Factory Complex, Gruber et al. 2002



  

CERN design - cooling
The Study of a European Neutrino Factory Complex, Gruber et al. 2002



  

CERN design - code

 Simulated using PATH
 Matrix code (to 3rd order)
 With pion decay



  

UK design

 Cooling-less design
Muon Capture Schemes for the Neutrino Factory, Stephen Brooks, D.Phil. thesis



  

Muon1

 Simulation using muon1
 Homebrew code

 Massively distributed optimisations
 Tracking through fairly realistic field maps



  

FS2 design
 Advanced cooling lattices developed “Feasibility Study 2”

 “SFoFo” lattice

Feasibility Study-II of a Muon Based Neutrino Source, Ed. S. Geer et al



  

US design - lattice

 Introduce complicated lattice concepts e.g. intricate 
solenoid arrangements

 Nb: basis of MICE design

(1,3) cell (2,1) cell



  

US design
 Simulation done in ICOOL

 Based on heavily modified version of Geant3
 Analysis tool ecalc9f

 Tracking done by numerical integration through space
 E.g. RK4
 Custom models for physics processes
 Dedicated model for passage of particles through liquid 

hydrogen
 Based on tracking individual scatters and tabulating results

 Several models for solenoids and multipoles
 Supports elaborate geometries (e.g. wedges, etc)

 See talk by Scott



  

FS2a

 Ps:
 FS2 design was considered too elaborate and simplified to so-

called Feasibility Study 2a design
 Ring lattices were investigated but considered too difficult
 FS2a lattice and ring concept merged into “rectilinear” concept

Front-end design for neutrino factory Study 2a, Fernow et al



  

Enter Geant4
 Geant4 adopted as a useful tool sometime early 2000s

 Daniel V Elvira’s “BeamTools” package
 Simulation of common beam elements e.g. RF, solenoids, dipoles ...

 Used by MICE project to build a simulation of the experiment
 Hard coded (C++) lattice description “G4MICE” package

 Includes provision for reconstruction etc
 Adopted into G4Beamline

 Convenient user interface – soft-coded lattice files
 Rather versatile lattice geometry building tools
 Convenient visualisation & GUIs
 Talk by Dan



  

Collective effects
 Space charge simulated using WARP models

 Binary? interface between WARP and ICOOL
 Good agreement for low beam current

Influence of space-charge fields on the cooling process of muon beams, 
Stratakis et al



  

IMCC
 IMCC is now looking at two codes for simulations
 BDSIM widely used for beamline simulations

 Interesting mix of matrix simulations and particle tracking
 Talk by Paul & Rohan

 RFTrack linac simulation tool
 Support for some collective effects
 Talk by Bernd



  

Models – Challenges
 Several “novel” challenges of simulation tools

 Overlapping field elements & long fringe fields
 Slightly exotic RF cavity arrangements
 Dipoles
 Passage of particles through matter

 Energy loss
 Scattering

 Decays
 Multiple and exotic particle species
 (Lately) collective effects

 Space charge
 Beam loading



  

Models – Solenoid
 Solenoids are a key lattice element
 Typically a few different options for solenoid models

 Analytical solution for “Block” conductor
 Current sheet model
 Maxwellian expansion
 Field maps



  

Current sheet model
 Semi-analytical solution exists for an infinitely thin sheet of 

current
 In the limit that n sheets → infinity, becomes a block conductor



  

Current sheet model (2)
 Convergence is reasonably rapid
 But note that there is a field discontinuity very close to the 

sheet
Bz



  

Field map
 Elliptical integrals can be slow to calculate

 Field calculation CPU time goes as N(sheets)
 For many thousands of muons this can be slow

 An optimisation is to:
 Write field map

 2D because rotational symmetry
 Do a look up at run time

 Quick
 Introduces a source of error (field map granularity)

G4MICE, MICE lattice



  

Maxwellian expansion
 If we know the Bz on axis, can approximate the field off-axis

 Assumes Maxwell’s laws to get a recursion relation



  

Maxwellian expansion
 Standard accelerator thing

 Nb: problem in SY Lee “Accelerator Physics”



  

RF
 RF cavities are typically assumed to be standing EM waves
 Cooling systems → typically cylindrical cavity
 If the cavity is a perfect cylinder, field can be calculated 

analytically:

 For some cooling systems, field can be assumed to follow 
TM010 mode (Tmnml)

 Assumes cavity is a perfect cylinder

A. Wolski, Beam Dynamics in High Energy Particle 
Accelerators, Imperial College Press



  

More realistic RF
 For greater realism, one can use 2D field map

 RF designers don’t like parallel walls
 RF designers don’t like sharp corners

 Cylindrical symmetry is a very good approximation
 Anisotropy near e.g. power couplers is negligible near the beam

 Ps: it is also possible to use a field expansion like solenoids but 
I don’t think any of the cooling codes do this

MICE
Cavity



  

Field map granularity
 Granularity in the field map can again introduce errors

G4MICE, MICE cavity



  

TM010 vs field map
 Practically the difference can be small

MICE lattice
o field map
+  TM010



  

Demonstrator RF structure

 Note that an RF structure like this may have bigger effect
 Windowless



  

Dipoles (quads, etc)
 No analytical model exists for dipoles and multipoles
 Either:

 Use a field map generated in an external code (OPERA, COMSOL, 
etc)

 Or:
 Use a field expansion based on Maxwell
 Typically field on axis is assumed to follow a “Enge” function
 By = Cn,0(d)

 To first order this is tanh function
 Find coefficients Ci by fitting to existing dipoles
 For suitable Ci, lambda, derivatives are continuous and 

exponentially tend to 0 at high d
 For complex d, get trigonometric functions appearing

 Ruihu lattice



  

Materials
 In materials, two main processes

 Multiple Coulomb scattering
 Ionisation energy loss

 Multiple Coulomb scattering (MCS)
 Muons strike atomic nucleus and scatter
 Mostly causes random kicks transverse to particle motion
 Does not change energy but tends to increase emittance 

 Ionisation energy loss (dE/dx)
 Muons strike atomic electrons and ionise them
 Mostly causes kicks along particle motion
 Does not increase emittance but absorbers muon energy
 Leads to a reduction in normalised emittance



  

Multiple Coulomb Scattering
 Two data sets for MCS in the region of interest

 MuScat – mid 2000s measurement at TRIUMF
 MICE – mid 2010s measurement at RAL



  

MuScat
 Simulation showed early version of Geant4 (6.1) had big 

discrepancy especially in liquid Hydrogen

D. Attwood et al, Nuclear Instruments and Methods in Physics Research B 251 (2006) 41–55



  

MICE
 Later versions of Geant4 (9.6) show improvement

M. Bogomilov et al, Phys.Rev.D 106 (2022) 9, 092003



  

MICE (lH2)
 Also lH2

Gavriil Chatzitheodoridis, Analysis of multiple Coulomb scattering of muons in liquid hydrogen, PhD Thesis (Strathclyde/Glasgow)



  

Energy loss
 Typically muon cooling is done around minimum ionising
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Energy straggling
 Random processes in energy straggling
 Note that everyone uses mean energy loss

 But mean energy loss is ill-defined



  

Cooling lattices

 Challenge now to model this!
 Overlapping solenoids with RF, dipoles
 Complicated intersecting material geometry
 Difficult beam dynamics



  

Extra Info

C. T. Rogers
Rutherford Appleton Laboratory



  

Collective Effects
 Two collective effects that are of immediate concern
 Space charge

 Particle beam tries to self-annihilate due to internal charge of the 
beam

 Beam loading
 Particle beam induces E-field in RF cavities
 This causes the tail of the beam to experience a different voltage 

than the head of the beam
 Other collective effects may exist



  

Space charge
 Aim to solve Poisson equation for an evolving charge 

distribution (rho)

 Solution looks like

 Discretising

Adelmann et al, OPAL a Versatile Tool for Charged Particle Accelerator Simulations, arxiv 1905 06654v1
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