

Software Mini-Workshop, online, 17.10.2024

RF-Track

<u>Bernd Stechauner^{1,2}, Rebecca Taylor², Rudolf Frühwirth^{1,4}, Andrea Latina², Chris Rogers³, Daniel Schulte², & Jochen Schieck^{1,4}</u>

¹University of Technology, Vienna ²CERN, Geneva ³STFC Rutherford Appleton Laboratory, Didcot ⁴Institute of High Energy Physics (HEHPY), Vienna

- Focus on RF-Track [1] as a novel simulation tool for final cooling
- Overview of implemented particle-matter interaction models
- Compare RF-Track with ICOOL[2] and G4BL[3]
- To-Dos
- Conclusion

About the **RF-Track** software

- **C++** code for accelerator physics simulations.
- Utilizes GNU Scientific Library (GSL) and the FFTW library.
- Software supports parallel processing for increased computational efficiency in complex particle tracking within field maps.
- Users have the option to interface with RF-Track using Python or Octave.
- Collective Effects:
 - Space charge forces
 - Short- and long-range wakefields
 - Beam loading phenomena
- Many RF-Track contributions [4-8]

Single-Particle Effects:

- Incoherent synchrotron radiation
- Magnetic multipole kicks
- Multiple Coulomb scattering

Particle-material interactions that are relevant for ionization cooling

Energy loss/ loss fluctuation

Multiple Coulomb scattering

Implementation into the RF-Track code

Reference materials for benchmarkings studies

- Performed benchmarkings:
 - 1. Absorbers
 - I. Liquid hydrogen
 - II. Lithium hydride
 - III. Beryllium
 - 2. Solenoid
 - 3. Single final cooling cell

Parameter	Unit	Magnitude
Material		LiH
Thickness	mm	65.37
Density	$ m g~cm^{-3}$	0.69
Li6 Fraction	by mass	0.814
Li7 Fraction	by mass	0.043
H Fraction	by mass	0.143
Momenta		171.55, 199.93, 239.76
Material		liquid H_2
Thickness	mm	349.6
Density	$ m g~cm^{-3}$	0.07053
Momenta	$MeV c^{-1}$	164.9,199.0,237.1
Material		liquid H_2
Thickness	mm	10
Density	$ m g~cm^{-3}$	0.07053
Momenta	$MeV c^{-1}$	30
Number of particles		10^{6}

144

0.0

0.1

=153.9 Me\

0.2

s[m]

0.3

0.05

0.00

0.4

2.5

10.0

7.5

 $E_{\rm Kin}(0) = 4.2 \, {\rm MeV}$

5.0

s[mm]

2.5

00

- Results show good agreement.
- Error increase in case of particle losses (see lower right plot).

Energy loss lithium hydride (LiH)

- The ICOOL manual presents LiH with a different density and a varying composition of Li6 and Li7 compared to the LiH sample form MICE.
- Mixing a specific material with ICOOL might require some additional clarification, as the process isn't immediately intuitive.
- Therefore, **RF-Track** energy loss benchmarking of **LiH** with **G4BI**.

How to mix material in **RF-Tack** and **G4BL** – code example:

Energy loss lithium hydride (LiH)

1.0

0.8

0.6 [%] LL 0.4

0.2

0.0

60

Error slightly higher, than compared to LH Might come from different mixing techniques

Semi-Gaussian distribution as scattering model in RF-Track [9,10]

$$f(\theta) = (1-\epsilon)\frac{\theta e^{\frac{-\theta^2}{2\sigma^2}}}{\sigma^2} + \epsilon \frac{2a^2\theta}{(\theta^2 + a^2)^2}$$

- The tail weight factor ϵ indicates the probability of a particle to be long ranged scattered
- The first term represents the **core** Gaussian of the distribution
- Term 2 shows a non-Gaussian single scattering distribution (tails)
- **ICOOL** and **G4BI** use the **Moliér** algorithm from the Gant4 library.

First try: ICOOL vs RF-track: Beryllium

- 1E6 muons for each simulation
- Start: 1 GeV mono energetic pencil beam
- Absorber length: 1% of radiation length
- The shape of the distribution changes minimally with the number of integration steps.
- The Moliér model lacks on the convolution property, indicating potential for further improvement.

ICOOL vs RF-Track: Liquid hydrogen

- 1E6 muons for each simulation.
- Example with 1, 10, 100 and 1000 steps.
- Excellent agreement is observed with ICOOL.
- Exception: the ICOOL model overestimates the tails slightly.

Internationa UON Collide

Std. scatter angle benchmarks

- **RF-Track** uses the current sheet model for solenoids.
- The model is based on **elliptical integral functions**.
- These functions come from GSL but require more computational time to evaluate field strength for all particle positions.
- Solution: RF-Track creates a meshgrid of the 3D solenoid field and uses an interpolation function to provide field strengths during particle tracking.

Solenoid field benchmarking

- Comparison **RT-Track** with **G4BL**.
- Sheet number: 200
- We find slightly differences in the off-axis and coil regions.

Analysis from R. Taylor

Parameter	Unit	Magnitude
Coil inner radius	mm	250.0
Coil radial thickness	mm	169.3
Coil outer radius	mm	419.3
Coil length	mm	140.0
Current density	A/mm^2	500.0
Particle species		$\mu +$
Particle momentum	MeV/c	200.0
Particle z start	mm	-500.0
Particle z end	mm	500.0
Particle radial step	mm	10.0
Particle maximum radius	mm	200.0

Solenoid field: particle tracking benchmarking

Parameter	Unit	Magnitude
Coil inner radius	mm	250.0
Coil radial thickness	mm	169.3
Coil outer radius	mm	419.3
Coil length	mm	140.0
Current density	A/mm^2	500.0
Particle species		$\mu +$
Particle momentum	MeV/c	200.0
Particle z start	mm	-500.0
Particle z end	mm	500.0
Particle radial step	mm	10.0
Particle maximum radius	mm	200.0

Analysis from R. Taylor

Final cooling cell example

Initial emittances taken form [11]

and the second second

To-do list for RF-Track

- RF-Track assumes the energy fluctuation as normal distributed.
- It must be Vavilov/Landau distributed.
- The Gauss approximation is valid for very thick materials.

- Comparison of tracking in cavities.
- RF-Track uses TM011 mode; G4BL uses TM010 mode.
- TM011 is the better option, since we consider window less cavites in final cooling.

Summary & outlook

- Energy loss model in RF-Track show high agreement with ICOOL and G4BL
- A multiple Coulomb scattering model based on a semi-Gaussian mixture model was added in RF-Track and compared with ICOOL.
- Results were compared with ICOOL, showing excellent benchmarking results.
- This new tool enables an optimized design of ionization cooling channels for a future muon collider.
- Next step: Focus on longitudinal beam distributions

Reference list

- [1] A.Latina, *RF-TRACK*, <u>https://gitlab.cern.ch/rf-track</u>.
- [2] R. Fernow, "COOL: a simulation code for ionization cool- ing of muon beams", *Proc. of the 1999 Particle Accelerator Conference*, New York, NY, USA, 1999, pp. 3020-3022 vol.5, doi:10.1109/PAC.1999.792132.
- [3] T.J. Roberts, "G4beamline simulation program for matter- dominated beamline", IEEE Particle Accelerator Conference (PAC), Albuquerque, NM, USA, 2007, pp. 3468-3470, 2007, doi: 10.1109/PAC.2007.4440461.
- [4] S. Benedetti et al., "High gradient linac for proton therapy"
- [5] C. Rossi et al., "The deep electron flash therapy facility"
- [6] Y. Han et al., "Optimization of the clic positron source using a start-to-end simulation approach involving multiple simulation codes".
- [7] Y. Zhao et al., "Comparison of Different Matching Device Field Profiles for the FCC-ee Positron Source,"
- [8] V. Musat et al., "A high-energy and high-intensity inverse Compton scattering source based on compact light technology,"

Reference list

- [9] R. Frühwirth, M. Liendel: Mixture models of multiple scattering: computation and simulation.
- [10] R. Frühwirth, M. Regler: On the quantitative modelling of core and tails of multiple scattering by Gaussian mixtures.
- [11] B. Palmer: Muon final cooling in 30-50T solenoids.

