

Cooling Software Mini-Workshop BDSIM

P. B. Jurj, R. Kamath, C. Rogers

Cooling Software Mini-Workshop

17 Oct 2024

Funded by the European Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them

Beam Delivery Simulation (BDSIM)

- Based on Geant4
 - Access to all Geant4 physical processes
- Matrix and numerical tracking
 - o Tracking of all particle types and production of secondaries
- Supports custom beamline elements / geometries
- Recently a 'muon cooler' beam line element has been developed:
 - Absorbers
 - RF cavities
 - o Solenoid coils
 - o Dipole coils under development (for 6d cooling)
- Refs:
 - o https://indico.stfc.ac.uk/event/362/contributions/2280/attachments/716/1251/2021-09-27-bdsim-for-muon-cooling.pdf
 - o https://www.pp.rhul.ac.uk/bdsim/manual/index.html

Absorber

Passed 10⁶ on-axis muons through MICE-like lithium hydride and liquid hydrogen absorbers, for different beam momenta

Parameter	Unit	Magnitude		
Material		LiH		
Thickness	$\mathbf{m}\mathbf{m}$	65.37		
Density	${ m g~cm^{-3}}$	0.69		
Li6 Fraction	by mass	0.814		
Li7 Fraction	by mass	0.043		
H Fraction	by mass	0.143		
Momenta		171.55, 199.93, 239.76		
Material		liquid H_2		
Thickness	$\mathbf{m}\mathbf{m}$	349.6		
Density	${ m g~cm^{-3}}$	0.07053		
Momenta	${ m MeV}~{ m c}^{-1}$	164.9,199.0,237.1		
Material		liquid H ₂		
Thickness	$\mathbf{m}\mathbf{m}$	10		
Density	${ m g~cm^{-3}}$	0.07053		
Momenta	${ m MeV}~{ m c}^{-1}$	30		
Number of particles		10^{6}		

Table 1: Reference absorbers and associated momenta.

Absorber

Absorber

Absorber

30 MeV/c

- BDSIM does not yet have an option to model the field from a block of current
 - $\circ \quad \text{Only solenoid sheet} \\$
- Here, the G4Beamline recipe was followed, i.
 e., modeled the block as a stack of sheets (in this case 20 sheets)
- Numerical intergrators:
 - G4ClassicalRK4
 - G4DormandPrince745
- Max integ. step lengths:
 - 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 mm

Parameter	Unit	Magnitude
Coil inner radius	mm	250.0
Coil radial thickness	$\mathbf{m}\mathbf{m}$	169.3
Coil outer radius	$\mathbf{m}\mathbf{m}$	419.3
Coil length	$\mathbf{m}\mathbf{m}$	140.0
Current density	A/mm^2	500.0
Particle species		$\mu +$
Particle momentum	MeV/c	200.0
Particle z start	mm	-500.0
Particle z end	$\mathbf{m}\mathbf{m}$	500.0
Particle radial step	mm	10.0
Particle maximum radius	mm	200.0

x, y trajectories, G4ClassicalRK4, 10 mm max step

Initial and final particle position, G4ClassicalRK4, 10 mm max step

Trajectory residuals, G4ClassicalRK4

Trajectory residuals, G4DormandPrince745

No apparent difference between the two integrators (to double check)

RF

- Cavity in TM₀₁₀ mode
- Timed such that the field is 0 when the 200 MeV/c particles arrive at the cavity center
- Only results using the G4ClassicalRK4 integrator with 10 mm max integ. step are shown

Parameter	Unit	Magnitude
Frequency	MHz	704.0
Peak electric field	MV/m	30.0
Length	$\mathbf{m}\mathbf{m}$	183.6
Window thickness	$\mathbf{m}\mathbf{m}$	0.0
Phase relative to bunching mode	0	0.0
Particle species		$\mu+$
Particle momentum	MeV/c	200.0
Particle z start	$\mathbf{m}\mathbf{m}$	-500.0
Particle z end	$\mathbf{m}\mathbf{m}$	500.0
Particle radial step	$\mathbf{m}\mathbf{m}$	10.0
Particle maximum radius	$\mathbf{m}\mathbf{m}$	200.0
Particle time step	ns	0.1/0.704
Particle maximum time	ns	1/0.704

Table 3: RF Cell and test particles.

RF

t = 0 ns

t = 0.71 ns

MuCol

0.229

0.228

MInternational UON Collider Collaboration

17

RF

MInternational UON Collider Collaboration

MuCol

- Field on-axis from cylindrical current sheets instead of blocks
- Fitted the BDSIM current sheet model to the analytic on-axis field

Parameter	Unit	Magnitude
Beam pipe radius	mm	81.6
Cooling cell length	$\mathbf{m}\mathbf{m}$	800.0
RF Cavity as Table 3		
Phase relative to bunching mode	0	20.0
RF cell separation	$\mathbf{m}\mathbf{m}$	5
RF centre-to-centre distance	$\mathbf{m}\mathbf{m}$	188.6
Iris radius	$\mathbf{m}\mathbf{m}$	81.6
Solenoid as Table 2		
Coil Z centre position	$\mathbf{m}\mathbf{m}$	100.7
No absorber		
Beam momentum	MeV/c	200.0
Beam distribution		Gaussian
Beam longitudinal emittance	eV ms	$1.3 imes 10^{-3}$
Beam transverse emittance	mm	$2.5 imes 10^{-3}$
σ_t	ns	0.003532
σ_E	${ m MeV}$	0.3692
Beam β_{\perp}	$\mathbf{m}\mathbf{m}$	107
Beam α_{\perp}		0
Beam L_{kin}	mm MeV/c	0

Table 4: Cooling Cell definition - with a low emittance beam.

- At 2.5 mm transverse emittance, some particles start scraping, some go backwards
 - Still working on processing and cleaning the virtual detector data
- To be continued..
- Simulated a 1 mm transverse emittance beam through (see backup)
 - o Fully transmitted
 - Just below equilibrium emittance so no cooling
- Note: previously shown transverse cooling using an earlier iteration of the cooling cell (see backup)

Parameter	Unit	Magnitude		
Cooling cell as Table 4 except absorber and beam				
Absorber as LiH from Table 1 except thickness				
Thickness	$\mathbf{m}\mathbf{m}$	10		
Beam momentum	MeV/c	200.0		
Beam distribution		Gaussian		
Beam longitudinal emittance	eV ms	1.3		
σ_t	ns	0.1117		
σ_E	${ m MeV}$	11.68		
Beam transverse emittance	$\mathbf{m}\mathbf{m}$	2.5		
Beam β_{\perp}	$\mathbf{m}\mathbf{m}$	107		
Beam α_{\perp}		0		
Beam L_{kin}	$\mathrm{mm}~\mathrm{MeV/c}$	0		

Table 5: Cooling Cell definition - with a high emittance beam.

Thank you

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

Back Up

Cooling cell version:2022-11-01 release

Transverse cooling observed 200 MeV/c beam with ~1.6 mm 4D emittance

P. Jurj, R. Kamath