

Investigating Nuclear Forces Through Low-Energy Polarization Observables

Thomas Krahulik University of Virginia August 22, 2024

Part I: The Nature of the Nuclear Force

Degrees of Freedom

Degrees of Freedom

On the Interaction of Elementary Particles. I.

By Hideki YUKAWA.

(Read Nov. 17, 1934)

§1. Introduction

At the present stage of the quantum theory little is known about the nature of interaction of elementary particles. Heisenberg considered

H. Yukawa

<u>1935:</u> Massive mediator of nuclear force, based off photon in EM interactions.

On the Interaction of Elementary Particles. I.

By Hideki YUKAWA.

(Read Nov. 17, 1934)

§1. Introduction

At the present stage of the quantum theory little is known about the nature of interaction of elementary particles. Heisenberg considered

Coulomb Interaction

r

H. Yukawa

<u>1935:</u> Massive mediator of nuclear force, based off photon in EM interactions.

The Nature of the Nuclear Force

On the Interaction of Elementary Particles. I.

By Hideki YUKAWA.

Introduction

At the present stage of the quantum theory little is known about the nature of interaction of elementary particles. Heisenberg considered

The Nature of the Nuclear Force

Discovered

1947

A comparison of Yukawa potentials with various values of m

A comparison of Yukawa potentials with various values of m

A comparison of Yukawa potentials with various values of m

$$V_{\pi}(\vec{r}) = \frac{g^2}{3}(\vec{\tau_1} \cdot \vec{\tau_2}) \left[\left(\vec{\sigma_1} \cdot \vec{\sigma_2} \right) + S_{12}(\vec{r})T(m_{\pi}r) \right] \frac{e^{-m_{\pi}r}}{r}$$

OPEP still struggles to accurately model short range interactions...

Meson Exchange Theory

QCD developed in the 1970s and became widely accepted as *the* theory of the strong interaction.

$$\mathcal{L}_{QCD} = \bar{\psi}_i \Big(i \gamma^\mu (D_\mu)_{ij} - m \delta_{ij} \Big) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

How do we handle low-energy (non-perturbative) QCD? How do we reconcile QCD with Meson Exchange Theory?

17

Chiral Effective Field Theory

EFT treatment of strong interactions in massless quark limit, introducing **chiral symmetry**.

Chiral symmetry breaking results in pseudo-Goldstone boson - the pion - acting as a mediator for the strong force

How To EFT:

- 1. Determine degrees of freedom
- 2. Identify relevant symmetries
- 3. Formulate general Lagrangian
- 4. Expand in low momentum
- 5. Calculate Feynman diagrams

Testing the Theory

Theories are compared to world data of scattering cross sections and bound state properties.

Tunable parameters within each model have led to high degree of consistency with experimental data. TABLE XIV. χ^2 /datum for the CD-Bonn potential, the Nijmegen phase shift analysis [42], and the Argonne V₁₈ potential [32] in regard to various databases discussed in the text.

	CD-Bonn	Nijmegen	Argonne	
	potential	phase shift analysis	V_{18} potential	
proton-proton data				
1992 pp database (1787 data)	1.00	1.00	1.10	
After-1992 pp data (1145 data)	1.03	1.24	1.74	
1999 pp database (2932 data)	1.01	1.09	1.35	
neutron-proton data				
1992 np database (2514 data)	1.03	0.99	1.08	
After-1992 np data (544 data)	0.99	0.99	1.02	
1999 np database (3058 data)	1.02	0.99	1.07	
pp and np data				
1992 NN database (4301 data)	1.02	0.99	1.09	
1999 NN database (5990 data)	1.02	1.04	1.21	

TABLE XV. Deuteron properties.

	CD-Bonn	Empirical
Binding energy B_d (MeV)	2.224575	2.224575(9)
Deuteron effective range $\rho_d = \rho(-B_d, -B_d)$ (fm)	1.765	1.765(9)
Asymptotic S state A_S (fm ^{-1/2})	0.8846	0.8846(9)
Asymptotic D/S state η	0.0256	0.0256(4)
Matter radius r_d (fm)	1.966	1.971(6)
Quadrupole moment Q_d (fm ²)	0.270^{a}	0.2859(3)
<i>D</i> -state probability P_D (%)	4.85	

^{*a*} Without meson current contributions and relativistic corrections.

Tables Source: R. Machleidt (2000)

Testing the Theory

Theories are compared to world data of scattering cross sections and bound state properties.

Tunable parameters within each model have led to high degree of consistency with experimental data.

TABLE XIV. χ^2 /datum for the CD-Bonn potential, the Nijmegen phase shift analysis [42], and the Argonne V₁₈ potential [32] in regard to various databases discussed in the text.

	CD-Bonn	Nijmegen	Argonne	
	potential	phase shift analysis	V_{18} potential	
proton-proton data				
1992 pp database (1787 data)	1.00	1.00	1.10	
After-1992 pp data (1145 data)	1.03	1.24	1.74	
1999 pp database (2932 data)	1.01	1.09	1.35	
	neutron-proto	n data		
1992 np database (2514 data)	1.03	0.99	1.08	
After-1992 np data (544 data)	0.99	0.99	1.02	
1999 np database (3058 data)	1.02	0.99	1.07	
pp and np data				
1992 NN database (4301 data)	1.02	0.99	1.09	
1999 NN database (5990 data)	1.02	1.04	1.21	

TABLE XV. Deuteron properties.

	CD-Bonn	Empirical
Binding energy B_d (MeV)	2.224575	2.224575(9)
Deuteron effective range $\rho_d = \rho(-B_d, -B_d)$ (fm)	1.765	1.765(9)
Asymptotic S state A_S (fm ^{-1/2})	0.8846	0.8846(9)
Asymptotic D/S state η	0.0256	0.0256(4)
Matter radius r_d (fm)	1.966	1.971(6)
Quadrupole moment Q_d (fm ²)	0.270^{a}	0.2859(3)
<i>D</i> -state probability P_D (%)	4.85	

^a Without meson current contributions and relativistic corrections.

Tables Source: R. Machleidt (2000)

Investigate **polarization observables** to further probe nucleon interactions and perform rigorous tests of nuclear potential models and EFTs.

Studying the Deuteron

$d(\gamma, n)p$ offers insight into:

- Nucleon-Nucleon Interactions
- Big Bang Nucleosynthesis
- Astrophysical Bodies such as Neutron Stars

Emergent Problems in $d(\gamma,n)p$

"Neutron Polarization Puzzle"

Emergent Problems in $d(\gamma,n)p$

"Neutron Polarization Puzzle"

p

Emergent Problems in $d(\gamma,n)p$

"Neutron Polarization Puzzle"

Background: $d(\gamma,n)p$ Studies

Blowfish Detector

 $HI_{\gamma}S$ Frozen Spin Target System

Background: $d(\gamma,n)p$ Studies

$d(\gamma, n)p$ Experiments	Energies (MeV)	Status	
$rac{d\sigma}{d\Omega}$, Σ of $~d(ec{\gamma},n)p$	3.5 - 10	Completed 2005	
$rac{d\sigma}{d\Omega}$ of $d(ec{\gamma},n)p$	14, 16	Completed 2007	
$rac{d\sigma}{d\Omega}$ of $d(ec{\gamma},n)p$	18	Completed 2010	
${\it P_y}^n$ in $d(\vec{\gamma},\vec{n})p$	8 - 16	Analysis Ongoing	
GDH Sum for d	8 - 16	Approved	
${\rm T_{20}} \text{ in } \stackrel{\leftrightarrow}{d} (\gamma,n)p$	4 - 20	Approved	

HI₂S Frozen Spin Target System

Part II: $d(\gamma, n)p$ Experiment

"A Measurement of Neutron Recoil Polarization in Deuteron Photodisintegration"

"Neutron Recoil Polarization"

$d(\gamma,n)p$ offers insight into:

- Nucleon-Nucleon Interactions
- Big Bang Nucleosynthesis
- Astrophysical Bodies such as Neutron Stars

A. Background and Motivation B. Experimental Setup C. Data Analysis Methods D. Monte Carlo Simulation

Motivation

Background and Motivation

Background and Motivation

Measurement

Measuring left-right asymmetry of neutron scattering from He analyzers:

$$\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = A(\theta) = P_y^m A_y(\theta)$$

Modifying beam polarization enables extraction of multiple polarization observables:

$$P_y^m \frac{d\sigma\left(P_y^{\gamma}, \theta_n, \phi\right)}{d\Omega} = \frac{d\sigma(\theta_n)}{d\Omega} \Big|_{P_y^{\gamma} = 0} \Big[P_y^u(\theta_n) + P_y^{\gamma} P_y^l(\theta_n) \cos(2\phi) \Big]$$

Circular:
$$P_{y}^{\gamma} = 0$$

Linear: $P_{y}^{\gamma} = 1$ P_{y}^{u} , P_{y}^{l}

Measurement

A. Background and Motivation B. Experimental Setup C. Data Analysis Methods D. Monte Carlo Simulation

$HI_{\gamma}S$ at TUNL

HI_γS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

Beam Parameters> $E_{\gamma} = 1-100 \text{ MeV}$, $\Delta E/E \approx 3\%$ > Flux = $6 \times 10^7 - 2.4 \times 10^8 \gamma/s$ > >95% Polarization - Linear or Circular

How It Works:

- Free Electron Laser (FEL) produces synchrotron radiation
- UV photons reflect in optical cavity
- Boosted to γ-rays (1-100 MeV) through
 Compton backscattering

 $E'_{\gamma} \approx 4\gamma^2 E_{\gamma}$ UV (3-100 eV) $\rightarrow \gamma$ -ray (1-100 MeV)

Experimental Setup

Experimental Setup

Diagram Image Credit: T. Polischuk

Experimental Setup
Experimental Setup

Polarization Analyzers

- \rightarrow ⁴He Polarization Analyzers
- He-Xe gas mixture at 2500 PSI
- PMTs measure light output from Xe scintillation
- Glass windows designed to undergo compressive forces only to withstand high internal pressure

Analyzer Preparation

MgO layer for internal reflection

Analyzer Preparation

Neutron Detectors

Outside of Detector In

Inside of Detector

- BC-505 Liquid Organic Scintillators
- PMT for scintillation light output
- Excellent neutral particle ID capabilities with PSD

Neutron Detectors

6 neutron counters assembled in a "cage"

Outside of Detector

Inside of Detector

- BC-505 Liquid Organic Scintillators
- PMT for scintillation light output
- Excellent neutral particle ID capabilities with PSD

Neutron Detectors

A. Background and Motivation
B. Experimental Setup
C. Data Analysis Methods
D. Monte Carlo Simulation

Measuring left-right asymmetry in neutron scattering:

$$\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = A(\theta) = P_y^m A_y(\theta)$$

Measuring left-right asymmetry in neutron scattering:

$$\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = A(\theta) = P_y^m A_y(\theta)$$

Which of the particles are neutrons?

Measuring left-right asymmetry in neutron scattering:

$$\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = A(\theta) = P_y^m A_y(\theta)$$

Which of the particles are neutrons?

Where are those neutrons going?

Measuring left-right asymmetry in neutron scattering:

$$\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}} = A(\theta) = P_{y}^{m}A_{y}(\theta)$$
Which of the particles are neutrons? Where are those neutrons going?
Particle ID

Particle ID: Time of Flight

Particle ID: PSD

PSD = Pulse Shape Discrimination

Measuring left-right asymmetry in neutron scattering:

$$\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}} = A(\theta) = P_{y}^{m}A_{y}(\theta)$$
Which of the particles are neutrons? Where are those neutrons going?
Particle ID

Measuring left-right asymmetry in neutron scattering:

$$\frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = A(\theta) = P_{y}^{m}A_{y}(\theta)$$
Which of the particles are neutrons? Where are those neutrons going?
Particle ID Particle Tracking

54

55

A. Background and MotivationB. Experimental SetupC. Data Analysis MethodsD. Monte Carlo Simulation

Simulation: Geant4

- Full model of experimental setup implemented in Geant4
- Variety of methods for inputting initial parameters based on beam polarization, energy, etc.
- Includes physics model for computing realistic light output from detected particles
- Used to estimate background, calibrate detector gains, investigate instrumental asymmetries

Simulation: Ay Angular Spread

Monte Carlo Simulation

Simulation: Ay Angular Spread

Monte Carlo Simulation

Modeling Polarized n Scattering

- Modification to low energy neutron scattering physics model in Geant4: G4ParticleHP
- > Monte Carlo weighting of unpolarized cross section $\left(\frac{d\sigma_0}{d\Omega}\right)$ provided by Geant4
- Handles polarization transport and depolarization effects from multiple scattering
- Produces simulated results of final measured asymmetries for direct comparison to experimental results

Simulation vs. Data

Experimental Asymmetries

Summary

- Polarization observables offer window into how the strong interaction manifests in nucleon-nucleon interactions
- Experiment to measure P_yⁿ in d(γ,n)p
 performed at HIGS (TUNL) in Fall 2023
- Measurement will investigate long-standing discrepancies between experimental measurements and theoretical calculations
- Expecting final results soon!

Acknowledgements

Collaborators:

- Blaine Norum -UVA
- Rob Pywell USask
- Tanner Polischuk USask
- Haoyu Chen UVA
- Matt Roberts UVA

*UVA = University of Virginia *USask = University of Saskatchewan

TUNL Faculty/Staff:

- Werner Tornow Duke University
- Calvin Howell Duke University
- ➤ with much support from the TUNL Staff!

This work supported in part by the Department of Energy under grant No. DE-SC0016443 and the Natural Sciences and Engineering Research Council of Canada. Thank You! Questions? Backup Slides

A. Background and Motivation B. Experimental Setup C. Data Analysis Methods D. Monte Carlo Simulation

Why Investigate $d(\gamma,n)p?$

Background and Motivation

Why Investigate $d(\gamma,n)p$?

n

Theories fit to world data of scattering and bound states.

TABLE XIV. χ^2 /datum for the CD-Bonn potential, the Nijmegen phase shift analysis [42], and the Argonne V_{18} potential [32] in regard to various databases discussed in the text.

	CD-Bonn	Nijmegen	Argonne		
	potential	phase shift analysis	V_{18} potential		
proton-proton data					
1992 pp database (1787 data)	1.00	1.00	1.10		
After-1992 pp data (1145 data)	1.03	1.24	1.74		
1999 pp database (2932 data)	1.01	1.09	1.35		
neutron-proton data					
1992 np database (2514 data)	1.03	0.99	1.08		
After-1992 np data (544 data)	0.99	0.99	1.02		
1999 np database (3058 data)	1.02	0.99	1.07		
pp and np data					
1992 NN database (4301 data)	1.02	0.99	1.09		
1999 NN database (5990 data)	1.02	1.04	1.21		

Table Source: R. Machleidt (2000)

Background and Motivation

Why Investigate $d(\gamma,n)p$?

Reid93

AV18

0.5

-100

0

Theories fit to world data of scattering and bound states.

TABLE XIV. χ^2 /datum for the CD-Bonn potential, the Nijmegen phase shift analysis [42], and the Argonne V_{18} potential [32] in regard to various databases discussed in the text.

	CD-Bonn	Nijmegen	Argonne		
	potential	phase shift analysis	V_{18} potential		
proton-proton data					
1992 pp database (1787 data)	1.00	1.00	1.10		
After-1992 pp data (1145 data)	1.03	1.24	1.74		
1999 pp database (2932 data)	1.01	1.09	1.35		
neutron-proton data					
1992 np database (2514 data)	1.03	0.99	1.08		
After-1992 np data (544 data)	0.99	0.99	1.02		
1999 np database (3058 data)	1.02	0.99	1.07		
pp and np data					
1992 NN database (4301 data)	1.02	0.99	1.09		
1999 NN database (5990 data)	1.02	1.04	1.21		

Table Source: R. Machleidt (2000)

π

r [fm]

2.5

2

1.5

Investigate polarization observables to further probe nucleon interactions and perform rigorous tests of nuclear potential models (and EFTs).

A. Background and Motivation B. Experimental Setup C. Data Analysis Methods D. Monte Carlo Simulation

HIγS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

 $\frac{\text{Beam Parameters}}{\Delta E_{\gamma}} = 1-100 \text{ MeV} , \quad \Delta E/E \approx 3\%$ $\Rightarrow \text{ Flux} = 6 \times 10^7 - 2.4 \times 10^8 \text{ } \text{} \text{} \text{} \text{/s}$ $\Rightarrow 95\% \text{ Polarization} - \text{Linear or Circular}$

HIγS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

 $\frac{\text{Beam Parameters}}{P} = 1-100 \text{ MeV} , \quad \Delta E/E \approx 3\%$ $\Rightarrow \text{ Flux} = 6 \times 10^7 - 2.4 \times 10^8 \text{ } \text{ } \text{/s}$ $\Rightarrow 95\% \text{ Polarization} - \text{Linear or Circular}$

How It Works:

Free Electron Laser (FEL) produces synchrotron radiation

HIγS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

 $\frac{\text{Beam Parameters}}{\Delta E_{\gamma}} = 1-100 \text{ MeV} , \quad \Delta E/E \approx 3\%$ $\Rightarrow \text{ Flux} = 6 \times 10^7 - 2.4 \times 10^8 \text{ } \text{} \text{} \text{} \text{/s}$ $\Rightarrow 95\% \text{ Polarization} - \text{Linear or Circular}$

How It Works:

Free Electron Laser (FEL) produces synchrotron radiation

HIγS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

 $\frac{\text{Beam Parameters}}{\Delta E_{\gamma}} = 1-100 \text{ MeV} , \quad \Delta E/E \approx 3\%$ $\Rightarrow \text{ Flux} = 6 \times 10^7 - 2.4 \times 10^8 \text{ } \text{} \text{} \text{} \text{/s}$ $\Rightarrow 95\% \text{ Polarization} - \text{Linear or Circular}$

How It Works:

Free Electron Laser (FEL) produces synchrotron radiation

$HI_{\gamma}S$ at TUNL

HI_γS = High Intensity Gamma Source

 $\frac{\text{Beam Parameters}}{P = 1-100 \text{ MeV}} \xrightarrow{\Delta E/E} \approx 3\%$ $\Rightarrow \text{ Flux} = 6 \times 10^7 - 2.4 \times 10^8 \text{ } \text{ } \text{/s}$ $\Rightarrow 95\% \text{ Polarization} - \text{Linear or Circular}$

How It Works:

- Free Electron Laser (FEL) produces synchrotron radiation
 - UV photons reflect in optical cavity

HIγS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

 $\frac{\text{Beam Parameters}}{P} = 1-100 \text{ MeV} , \quad \Delta E/E \approx 3\%$ $\Rightarrow \text{ Flux} = 6 \times 10^7 - 2.4 \times 10^8 \text{ } \text{ } \text{/s}$ $\Rightarrow 95\% \text{ Polarization} - \text{Linear or Circular}$

How It Works:

- Free Electron Laser (FEL) produces synchrotron radiation
 - UV photons reflect in optical cavity

$HI_{\gamma}S$ at TUNL

HIγS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

Beam Parameters> $E_{\gamma} = 1-100 \text{ MeV}$, $\Delta E/E \approx 3\%$ > Flux = 6 × 10⁷ - 2.4 × 10⁸ γ /s> >95% Polarization - Linear or Circular

How It Works:

- Free Electron Laser (FEL) produces synchrotron radiation
 - > UV photons reflect in optical cavity
- Boosted to γ-rays (1-100 MeV) through
 Compton backscattering

HI_γS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

Beam Parameters> $E_{\gamma} = 1-100 \text{ MeV}$, $\Delta E/E \approx 3\%$ > Flux = $6 \times 10^7 - 2.4 \times 10^8 \gamma/s$ > >95% Polarization - Linear or Circular

How It Works:

- Free Electron Laser (FEL) produces synchrotron radiation
- UV photons reflect in optical cavity
- Boosted to γ-rays (1-100 MeV) through
 Compton backscattering

 $E'_{\gamma} \approx 4\gamma^2 E_{\gamma}$ UV (3-100 eV) $\rightarrow \gamma$ -ray (1-100 MeV)

$HI_{\gamma}S$ at TUNL

HI_γS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

How It Works:

- Free Electron Laser (FEL) produces synchrotron radiation
- UV photons reflect in optical cavity
- Boosted to γ-rays (1-100 MeV) through
 Compton backscattering

 $E'_{\gamma} \approx 4\gamma^2 E_{\gamma}$ UV (3-100 eV) $\rightarrow \gamma$ -ray (1-100 MeV)

HIγS = High Intensity Gamma Source

Image Credit: H. Weller et al (2009)

How It Works:

- Free electron laser produces UV photons
 Boosted to v-rays (1-100 MeV) through
 - Boosted to γ -rays (1-100 MeV) through **Compton backscattering**

 $E_{\gamma}^{'} \approx 4\gamma^2 E_{\gamma}$

- Beveled flange and window: Forces on glass are compressive, much better than shear forces
- Epoxy holding glass in steel flange - no glass-steel contact, protects against irregularities in either material
- Pressure tests performed to 4000
 PSI for 2 to 3 weeks on each analyzer assembled and used

Gas Handling

Analyzer Signal Timing

Data Analysis

Time Difference Characterization

- Time difference between top and bottom PMTs on analyzer
- Fit Function: Breit-Wigner

$$P(t) = \frac{A}{(t - t_0)^2 + \frac{\Gamma^2}{2}}$$

Parameters: A = Constant

- $t_0 = Mean / Time Offset$
- Γ = Width of Peak
- Also performed Gaussian fit to top part of peak....FWHM very similar
- > Nonzero t_0 due to off-center from beam

Simulation: Geometric Asymmetry

Corrections calculated from Geant4

Monte Carlo Simulation