



# Implementation of ALFRED to control the setup in the FIT lab

Ignacy Mermer





## **Project overview**



- ALFRED (ALICE Low Level Front End Device) consists of FRED (Front End Device) and ALF (ALICE Low Level Frontend);
- WinCC O.A. supervisory software for the control centreormachine operation on the user's device;
- DIM (Distributed Information Management) topics for connection between WinCC-FRED and FRED-ALF;
- Dim servers needs DNS, to communicate on the same host;





\_

\_

#### Project establishment



- "Control Server" is communicating by IPbus and run on localhost with WinCC;
- IPbus Software and firmware that provide control for electronics, by implementing control protocol for reading and modifying resources within FPGA-based hardware devices;
- The final goal is to communicate between ALF-WinCC using DIM and between CRU-FEE using GBT;
- Our actual goal is to connect by IPbus between ALFIPbus and Frontend Electronics (FEE);



#### Fig.4 Final assumption of the system



SPARC2024 internship



## Connection between WinCC and ALFsim



- ALFsim (simulator emulating ALF) connecting to provided IP address based on "Control Server" code;
- Two different computers for FRED and ALFsim and communication between them using DIM RPC;
- Different types of provided protocols to pass data in text between FRED and ALF;



[imermer@alidcscom769 ALF simulator-master]\$ ./bin/AlfSimulator -a 42 -s 2 -l 12 -v -d 150 Attempting to open socket... Socket successfully opened Checking status of device at 172.20.75.180 Status check successful: Device is available. Checking status of device at 172.20.75.180 Status check successful: Device is available. [INFO] ALF Simulator with DNS name "ALF 42" is running! RPC "ALF 42/SERIAL 0/LINK 0/SCA SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 0/SWT SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 0/IC SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 0/IC GBT I2C WRITE" registered RPC "ALF\_42/SERIAL\_0/LINK\_1/SCA\_SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 1/SWT SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 1/IC SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 1/IC GBT I2C WRITE" registered RPC "ALF\_42/SERIAL\_0/LINK\_2/SCA\_SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 2/SWT SEQUENCE" registered RPC "ALF\_42/SERIAL\_0/LINK\_2/IC\_SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 2/IC GBT I2C WRITE" registered RPC "ALF 42/SERIAL 0/LINK 3/SCA SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 3/SWT SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 3/IC SEQUENCE" registered RPC "ALF\_42/SERIAL\_0/LINK\_3/IC\_GBT\_I2C\_WRITE" registered RPC "ALF 42/SERIAL 0/LINK 4/SCA SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 4/SWT SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 4/IC SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 4/IC GBT I2C WRITE" registered RPC "ALF 42/SERIAL 0/LINK 5/SCA SEQUENCE" registered RPC "ALF\_42/SERIAL\_0/LINK\_5/SWT\_SEQUENCE" registered RPC "ALF\_42/SERIAL\_0/LINK\_5/IC\_SEQUENCE" registered RPC "ALF\_42/SERIAL\_0/LINK\_5/IC\_GBT\_I2C\_WRITE" registered RPC "ALF 42/SERIAL 0/LINK 6/SCA SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 6/SWT SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 6/IC SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 6/IC GBT I2C WRITE" registered RPC "ALF 42/SERIAL 0/LINK 7/SCA SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 7/SWT SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 7/IC SEQUENCE" registered VERBOSE 1 RPC "ALF 42/SERIAL 0/LINK 7/IC GBT I2C WRITE" registered RPC "ALF 42/SERIAL 0/LINK 8/SCA SEQUENCE" registered RPC "ALF\_42/SERIAL\_0/LINK\_8/SWT\_SEQUENCE" registered RPC "ALF 42/SERIAL 0/LINK 8/IC SEQUENCE" registered [VERBOSE] RPC "ALF 42/SERIAL 0/LINK 8/IC GBT I2C WRITE" registered [VERBOSE] RPC "ALF 42/SERIAL 0/LINK 9/SCA SEQUENCE" registered [VERBOSE] RPC "ALF 42/SERIAL 0/LINK 9/SWT SEQUENCE" registered

#### Fig.6 ALFsim with IPbus connecting with electronics





- 3 bites for type of operation;
- 32 bites for address;
- 32 bites for data;
- one service on ALF and based on address parameter;





#### Fig.8 SWT frame structure

SPARC2024 internship



| IPbus operations in SWT                                    |
|------------------------------------------------------------|
| MM R/W ADDRESS DATA -> RESPONSE                            |
| 2b 1b 32b 32b -> 32b                                       |
| READ non-inc (FIFO)                                        |
| MM R/W ADDRESS DATA -> RESPONSE                            |
| 00 0 ADDRESS DONTCARE -> X<br>00 0 ADDRESS DONTCARE -> X   |
| READ inc                                                   |
| MM R/W ADDRESS DATA -> RESPONSE                            |
| 00 0 ADDRESS DONTCARE -> X<br>00 0 ADDRESS+1 DONTCARE -> X |
| WRITE non-inc (FIFO)                                       |
| MM R/W ADDRESS DATA -> RESPONSE                            |
| 00 1 ADDRESS DATA -> OK<br>00 1 ADDRESS DATA -> OK         |
| WRITE inc                                                  |
| MM R/W ADDRESS DATA -> RESPONSE                            |
| 00 1 ADDRESS DATA -> OK<br>00 1 ADDRESS+1 DATA -> OK       |
| RMW bits X <= (X & A)   B                                  |
| MM R/W ADDRESS DATA -> RESPONSE                            |
| 01 0 ADDRESS A -> preX<br>01 1 ADDRESS B -> OK             |
| RMW Sum X <= (X + A)                                       |

10 0 ADDRESS A -> preX

## Fig.7 Types of operations in ALF

MM R/W ADDRESS DATA -> RESPONSE

5



#### FRED MAPI for TCM

- MAPI Message Application Interface;
- TCM Trigger and Clock Module (master module in FIT detector's electronics);
- Using SWT (Single Word Transaction) frames in declaration of DIM topics;
- Using only MAPI topics in FRED;
- 4 types of operations: READ, WRITE, RMW AND/OR;







#### Refresh data in WinCC



- One SWT sequence consists of all

parameters addresses send to ALF;

- Update only this variables which has ALF changed, calculate output and update service;



services.push back(serviceName+"MODE SETTINGS"); services.push back(serviceName+"TRIGGER RESPOND MASK"); services.push back(serviceName+"DATA BUNCH PATTERN"); services.push back(serviceName+"TRIGGER SINGLE VALUE"); services.push back(serviceName+"TRIGGER CONT PATTERN MSB"); services.push back(serviceName+"TRIGGER CONT PATTERN LSB"); services.push back(serviceName+"TRIGGER CONT VALUE"); services.push back(serviceName+"GENERATORS BUNCH FREQ"); services.push back(serviceName+"GENERATORS FREQ OFFSET"); services.push back(serviceName+"RDH FIELDS1"); services.push back(serviceName+"RDH FIELDS2"); services.push back(serviceName+"DELAYS"); services.push back(serviceName+"DATA SELECT TRG MASK"); services.push back(serviceName+"MODES STATUS"); services.push back(serviceName+"CRU BC"); services.push back(serviceName+"CRU ORBIT"); services.push back(serviceName+"FIF0 COUNT"); services.push back(serviceName+"SEL FIRST HIT DROPPED ORBIT"); services.push back(serviceName+"SEL LAST HIT DROPPED ORBIT"); services.push back(serviceName+"SEL HITS DROPPED"); services.push back(serviceName+"READOUT RATE"); services.push back(serviceName+"CURRENT ADDRESS"); services.push back(serviceName+"HISTOGRAM DATA READOUT"); services.push back(serviceName+"ATX TIMESTAMP"); services.push back(serviceName+"FW UPGRADE COMM"); services.push back(serviceName+"FW UPGRADE DATA"); services.push back(serviceName+"FW UPGRADE END"); services.push back(serviceName+"FW UPGRADE STATUS"); services.push back(serviceName+"FPGA TEMPERATURE"); services.push back(serviceName+"1VPOWER"); services.push back(serviceName+"18VPOWER"); services.push back(serviceName+"FPGA TIMESTAMP");

#### **Fig.13 Declaration of services**



#### PMs implementation

- PM Processing Module, PM provides 12 independent inputs and each PM is connected to TCM via an HDMI cable;
- Services configured automatically depending on configuration from config file (FRED independent for detector type and Lab);

|                                                                                    |                                                          |        |               |                |            |               | -E |
|------------------------------------------------------------------------------------|----------------------------------------------------------|--------|---------------|----------------|------------|---------------|----|
| OUNT_TRG_HITS_B = {<br>TYPE = SWT                                                  |                                                          |        |               |                |            |               |    |
| OUNT_TRG_HITS_C = {<br>TYPE = SWT                                                  |                                                          |        |               |                |            |               |    |
| ODE_SETTINGS = {<br>TYPE = SWT                                                     |                                                          |        |               |                |            |               |    |
| RIGGER_RESPOND_MASK = {<br>TYPE = SWT                                              | ₿€                                                       | LAB    | (1856 service | es, pid 10045) |            |               |    |
| ATA_BUNCH_PATTERN = {<br>TYPE = SWT                                                | 1                                                        | \Xi L/ | AB/CLIENT_I   | LIST           |            |               |    |
|                                                                                    |                                                          | 🛃 L/   | AB/EXIT       |                |            |               |    |
| RIGGER SINGLE_VALUE = {<br>TYPE = SWT<br>RIGGER_CONT_PATTERN_MSB = {<br>TYPE = SWT |                                                          | 2 V    | AB/PM/PMAG    | 18VPOWER       | ANS        |               |    |
|                                                                                    |                                                          | z V    | AB/PM/PMAG    | 18VPOWER       | ERR        |               |    |
|                                                                                    |                                                          | te U   | AB/PM/PMAG    | 18VPOWER       | REQ        |               |    |
| RIGGER_CONT_PATTERN_LSB = {<br>TYPE = SWT                                          |                                                          | ΞL     | AB/PM/PMAG    | V1VPOWER_      | ANS        |               |    |
|                                                                                    |                                                          | ΞV     | AB/PM/PMAG    | VIVPOWER_E     | RR         |               |    |
| RIGGER_CONT_VALUE = {<br>TYPE = SWT                                                |                                                          | 1 II   | AB/PM/PMAG    | VIVPOWER_F     | REQ        |               |    |
|                                                                                    |                                                          | ΞV     | AB/PM/PMAG    | ADC0_BASE      | LINE_1_ANS | s             |    |
| ENERATORS_BUNCH_FREQ = {<br>TYPE = SWT                                             |                                                          | ΞV     | AB/PM/PMAG    | ADC0 BASE      | LINE 1 ERF | R             |    |
|                                                                                    |                                                          | 1 LA   | AB/PM/PMAG    | ADC0 BASE      | LINE 1 REC | o             |    |
| ENERATORS_FRE0_OFFSET = {<br>TYPE = SWT                                            |                                                          |        |               | _              |            |               |    |
| DH_FIELDS1 = {<br>TYPE = SWT                                                       |                                                          |        |               |                |            |               |    |
|                                                                                    | Service                                                  | e LAB/ | PM/PMA0/      | IVPOWER_A      | NS (C) Con | tents :       |    |
| DH_FIELDS2 = {<br>TYPE = SWT                                                       |                                                          |        |               |                |            |               |    |
|                                                                                    | Timestamp: Mon Aug 19 14:15:26.587 2024 Quality: 0 Size: |        |               |                |            | Size: 9 bytes |    |
| ELAYS = {<br>TYPE = SWT                                                            | C 0H: 30 2E 39 36 37 33 39 32 00 '0.967392.'             |        |               |                |            |               |    |
| ATA_SELECT_TRG_MASK = {                                                            |                                                          |        |               |                |            |               |    |

#### Fig.14 Services add to MAPI



## Coming days



- Testing FRED and ALFIPbus with unit testing and performance testing for more requests and all PMs running;
- Histogram's services implementation in FRED;





## Thank you for your attention!

Ignacy Mermer ignacy.mermer.stud@pw.edu.pl Contact Person: Krystian Roslon krystian.roslon@cern.ch



## Bibliography



- [1] - "DIM - A distributed information management system for the DELPHI experiment at CERN" - <u>https://inspirehep.net/files/a5d11cd059531d5d3bb91dc93a7cad51</u> - dim.web.cern.ch

- [2], [3], [4] – "FRED—Flexible Framework for Frontend Electronics Control in ALICE Experiment at CERN" - https://www.mdpi.com/2227-9717/8/5/565