
Direct I/O for RNTuple Columnar Data

Jonas Hahnfeld1,2 Jakob Blomer1 Philippe Canal3 Thorsten Kollegger2

jonas.hahnfeld@cern.ch
1 CERN, Geneva, Switzerland

2 Goethe University Frankfurt, Institute of Computer Science, Frankfurt, Germany

3 Fermi National Accelerator Laboratory, Batavia, IL, USA

CHEP 2024 – October 21, 2024

mailto:jonas.hahnfeld@cern.ch

Motivation

• RNTuple: designated successor of TTree columnar format for HL-LHC
◦ Modern design, optimized for current hardware, with parallelism in mind
◦ See many presentations this week, including a plenary on Wednesday

• Developed highly scalable parallel writing without merging / post-processing
◦ Advantage: multi-threaded job produces one output file directly
◦ Presented concepts and performance evaluation at Euro-Par 2024 in August

• Synthetic benchmarks: up to storage bandwidth limit on SSDs
◦ Today: exploiting Direct I/O to increase that limit

1 / 12

https://indico.cern.ch/event/1338689/contributions/6077632/
https://doi.org/10.1007/978-3-031-69766-1_2

Motivation

• RNTuple: designated successor of TTree columnar format for HL-LHC
◦ Modern design, optimized for current hardware, with parallelism in mind
◦ See many presentations this week, including a plenary on Wednesday

• Developed highly scalable parallel writing without merging / post-processing
◦ Advantage: multi-threaded job produces one output file directly
◦ Presented concepts and performance evaluation at Euro-Par 2024 in August

• Synthetic benchmarks: up to storage bandwidth limit on SSDs
◦ Today: exploiting Direct I/O to increase that limit

1 / 12

https://indico.cern.ch/event/1338689/contributions/6077632/
https://doi.org/10.1007/978-3-031-69766-1_2

Motivation

• RNTuple: designated successor of TTree columnar format for HL-LHC
◦ Modern design, optimized for current hardware, with parallelism in mind
◦ See many presentations this week, including a plenary on Wednesday

• Developed highly scalable parallel writing without merging / post-processing
◦ Advantage: multi-threaded job produces one output file directly
◦ Presented concepts and performance evaluation at Euro-Par 2024 in August

• Synthetic benchmarks: up to storage bandwidth limit on SSDs
◦ Today: exploiting Direct I/O to increase that limit

1 / 12

https://indico.cern.ch/event/1338689/contributions/6077632/
https://doi.org/10.1007/978-3-031-69766-1_2

Direct I/O

• Under Linux, by default files are accessed via the page cache
◦ Reads are cached in unused memory
◦ Writes are buffered and flushed in bulk at a later point

• Page cache is only one layer in the storage system
◦ Buffers in user-space, caches in firmware and hardware...

• Direct I/O allows to bypass the page cache
◦ Originally implemented for database applications

2 / 12

Direct I/O

• Under Linux, by default files are accessed via the page cache
◦ Reads are cached in unused memory
◦ Writes are buffered and flushed in bulk at a later point

• Page cache is only one layer in the storage system
◦ Buffers in user-space, caches in firmware and hardware...

• Direct I/O allows to bypass the page cache
◦ Originally implemented for database applications

2 / 12

application

C stdio

page cache

block device

storage

fwrite()

write()

user-space

kernel-space

Direct I/O

• Under Linux, by default files are accessed via the page cache
◦ Reads are cached in unused memory
◦ Writes are buffered and flushed in bulk at a later point

• Page cache is only one layer in the storage system
◦ Buffers in user-space, caches in firmware and hardware...

• Direct I/O allows to bypass the page cache
◦ Originally implemented for database applications

2 / 12

application

C stdio

page cache

block device

storage

fwrite()

write()

user-space

kernel-space

Requirements for Direct I/O (from man 2 open)

• No clear documentation on requirements:
◦ “may impose alignment restrictions on [...]”
◦ “vary by filesystem and kernel version and might be absent entirely”
◦ “handling of misaligned [Direct I/O] also varies”

• Alignment restrictions on...
◦ ... file offset and byte count
◦ ... user-space buffer addresses

• General advice: offsets, lengths, and addresses should be multiples of
◦ “filesystem block size (typically 4096 bytes)”, or
◦ “logical block size of the block device (typically 512 bytes)”

3 / 12

Requirements for Direct I/O (from man 2 open)

• No clear documentation on requirements:
◦ “may impose alignment restrictions on [...]”
◦ “vary by filesystem and kernel version and might be absent entirely”
◦ “handling of misaligned [Direct I/O] also varies”

• Alignment restrictions on...
◦ ... file offset and byte count
◦ ... user-space buffer addresses

• General advice: offsets, lengths, and addresses should be multiples of
◦ “filesystem block size (typically 4096 bytes)”, or
◦ “logical block size of the block device (typically 512 bytes)”

3 / 12

Requirements for Direct I/O (from man 2 open)

• No clear documentation on requirements:
◦ “may impose alignment restrictions on [...]”
◦ “vary by filesystem and kernel version and might be absent entirely”
◦ “handling of misaligned [Direct I/O] also varies”

• Alignment restrictions on...
◦ ... file offset and byte count
◦ ... user-space buffer addresses

• General advice: offsets, lengths, and addresses should be multiples of
◦ “filesystem block size (typically 4096 bytes)”, or
◦ “logical block size of the block device (typically 512 bytes)”

3 / 12

Direct I/O for RNTuple

• RNTuple data stored in pages of variable size
◦ Also transparently compressed with unknown compression ratio
◦ Generally not aligned appropriately

• However, synthetic benchmarks showed significant gains for writing
◦ (will come back to Direct I/O for reading at the end)

• Solution to meet alignment requirements: implement buffering in user-space
◦ For writing now done when creating a new file (but not when appending)

4 / 12

Direct I/O for RNTuple

• RNTuple data stored in pages of variable size
◦ Also transparently compressed with unknown compression ratio
◦ Generally not aligned appropriately

• However, synthetic benchmarks showed significant gains for writing
◦ (will come back to Direct I/O for reading at the end)

• Solution to meet alignment requirements: implement buffering in user-space
◦ For writing now done when creating a new file (but not when appending)

4 / 12

Direct I/O for RNTuple

• RNTuple data stored in pages of variable size
◦ Also transparently compressed with unknown compression ratio
◦ Generally not aligned appropriately

• However, synthetic benchmarks showed significant gains for writing
◦ (will come back to Direct I/O for reading at the end)

• Solution to meet alignment requirements: implement buffering in user-space
◦ For writing now done when creating a new file (but not when appending)

4 / 12

RNTuple Writing with Direct I/O – setup

• Benchmarking server with AMD EPYC 7702P (64 cores / 128 threads)
◦ Running AlmaLinux 9.4, ROOT compiled with GCC 11.4.1
◦ Samsung PM1733 NVMe SSD formatted with ext4

• 4 MiB buffer for writing (tradeoff between size and performance)
◦ Offsets, lengths, and addresses aligned to 4096 bytes (see also next slide)

• Reduced maximum page size to 128 KiB
◦ Fits in L2 cache of benchmark system

5 / 12

RNTuple Writing with Direct I/O – setup

• Benchmarking server with AMD EPYC 7702P (64 cores / 128 threads)
◦ Running AlmaLinux 9.4, ROOT compiled with GCC 11.4.1
◦ Samsung PM1733 NVMe SSD formatted with ext4

• 4 MiB buffer for writing (tradeoff between size and performance)
◦ Offsets, lengths, and addresses aligned to 4096 bytes (see also next slide)

• Reduced maximum page size to 128 KiB
◦ Fits in L2 cache of benchmark system

5 / 12

RNTuple Writing with Direct I/O – setup

• Benchmarking server with AMD EPYC 7702P (64 cores / 128 threads)
◦ Running AlmaLinux 9.4, ROOT compiled with GCC 11.4.1
◦ Samsung PM1733 NVMe SSD formatted with ext4

• 4 MiB buffer for writing (tradeoff between size and performance)
◦ Offsets, lengths, and addresses aligned to 4096 bytes (see also next slide)

• Reduced maximum page size to 128 KiB
◦ Fits in L2 cache of benchmark system

5 / 12

RNTuple Writing with Direct I/O – no compression

• Bandwidth limit: 775 MB/s → more than 3,600 MB/s with Direct I/O!

1 2 4 8 16 32 64 128
0

1,000

2,000

3,000

4,000

threads

st
or
a
ge

b
an

d
w
id
th

[M
B
/s
]

bandwidth limit
buffered writing

limit (fallocate)

writing (fallocate)

limit (Direct I/O)

Direct I/O
512B alignment

6 / 12

RNTuple Writing with Direct I/O – no compression

• Bandwidth limit: 775 MB/s → more than 3,600 MB/s with Direct I/O!

1 2 4 8 16 32 64 128
0

1,000

2,000

3,000

4,000

threads

st
or
a
ge

b
an

d
w
id
th

[M
B
/s
]

bandwidth limit
buffered writing

limit (fallocate)

writing (fallocate)

limit (Direct I/O)

Direct I/O
512B alignment
achievable bandwidth

6 / 12

RNTuple Writing with Direct I/O – default zstd compression

• Storage bandwidth: after compression, what is written to storage

1 2 4 8 16 32 64 128

25

50

100

200

400

800

1,600

3,200

threads

st
or
a
ge

b
an

d
w
id
th

[M
B
/s
]

bandwidth limit
buffered writing

limit (Direct I/O)

Direct I/O

7 / 12

RNTuple Writing with Direct I/O – compression algorithms

• Storage bandwidth: after compression, what is written to storage

1 2 4 8 16 32 64 128

4
8

16
32
64
128
256
512

1,024
2,048
4,096

threads

st
o
ra
g
e
b
an

d
w
id
th

[M
B
/
s]

bandwidth limit
uncompressed
lz4, level 4
(CX = 2.02)

zstd, level 51

(CX = 2.15)
lzma, level 7
(CX = 2.19)

1For zstd, ROOT maps level 5 to Zstandard compression level 10.
8 / 12

RNTuple Writing with Direct I/O – data bandwidth

• Data bandwidth: before compression, what the user fills into RNTuple

1 2 4 8 16 32 64 128

4
8

16
32
64
128
256
512

1,024
2,048
4,096

threads

d
a
ta

b
a
n
d
w
id
th

[M
B
/s
]

uncompressed
lz4, level 4
(CX = 2.02)

zstd, level 51

(CX = 2.15)
lzma, level 7
(CX = 2.19)

1For zstd, ROOT maps level 5 to Zstandard compression level 10.
9 / 12

RNTuple Writing with Direct I/O – maximize data bandwidth

• Q: At 128 threads, which compression level gives the highest data bandwidth?
◦ Possible use cases: online data streaming, burst buffering

1 2 3 4 5 6 7 8 9
0

2,000

4,000

6,000

compression level

d
a
ta

b
an

d
w
id
th

[M
B
/s
]

uncompressed

lz4 (1.93 < CX < 2.07)

zstd1 (2.11 < CX < 2.18)

1For zstd, ROOT scales the compression level by a factor 2.
10 / 12

Direct I/O for Reading?

• Similar alignment challenges as for writing
◦ Extend and align buffering for reading, add padding to read requests
◦ Note: need to disable optimized reading with io_uring

• Can observe faster read times in sample analysis benchmarks2 (up to factor 2x)
◦ Small improvements of overall run time for LHCb sample analysis

• Up to 12 % with a single thread and no compression
◦ No gain for ATLAS sample analysis with sparser reading pattern
◦ Reasons: Asynchronous cluster prefetching and reads with io_uring

• Also tested with Analysis Grand Challenge
◦ Dataset of 787 files converted to RNTuple
◦ No statistically significant change in performance

2https://github.com/jblomer/iotools
11 / 12

https://github.com/jblomer/iotools

Direct I/O for Reading?

• Similar alignment challenges as for writing
◦ Extend and align buffering for reading, add padding to read requests
◦ Note: need to disable optimized reading with io_uring

• Can observe faster read times in sample analysis benchmarks2 (up to factor 2x)
◦ Small improvements of overall run time for LHCb sample analysis

• Up to 12 % with a single thread and no compression
◦ No gain for ATLAS sample analysis with sparser reading pattern
◦ Reasons: Asynchronous cluster prefetching and reads with io_uring

• Also tested with Analysis Grand Challenge
◦ Dataset of 787 files converted to RNTuple
◦ No statistically significant change in performance

2https://github.com/jblomer/iotools
11 / 12

https://github.com/jblomer/iotools

Direct I/O for Reading?

• Similar alignment challenges as for writing
◦ Extend and align buffering for reading, add padding to read requests
◦ Note: need to disable optimized reading with io_uring

• Can observe faster read times in sample analysis benchmarks2 (up to factor 2x)
◦ Small improvements of overall run time for LHCb sample analysis

• Up to 12 % with a single thread and no compression
◦ No gain for ATLAS sample analysis with sparser reading pattern
◦ Reasons: Asynchronous cluster prefetching and reads with io_uring

• Also tested with Analysis Grand Challenge
◦ Dataset of 787 files converted to RNTuple
◦ No statistically significant change in performance

2https://github.com/jblomer/iotools
11 / 12

https://github.com/jblomer/iotools

Conclusions

• Implemented option for using Direct I/O in RNTuple writing
◦ Demonstrated benefits together with scalable parallel writing
◦ Reaching up to 2.8 GB/s for uncompressed data (can be improved to 3.2 GB/s)
◦ Up to 5 GB/s data bandwidth with cheap compression level

• If you have use cases for high bandwidths with parallel writing, please talk to us!

12 / 12

