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Motivation

• RNTuple: designated successor of TTree columnar format for HL-LHC
◦ Modern design, optimized for current hardware, with parallelism in mind
◦ See many presentations this week, including a plenary on Wednesday

• Developed highly scalable parallel writing without merging / post-processing
◦ Advantage: multi-threaded job produces one output file directly
◦ Presented concepts and performance evaluation at Euro-Par 2024 in August

• Synthetic benchmarks: up to storage bandwidth limit on SSDs
◦ Today: exploiting Direct I/O to increase that limit
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Direct I/O

• Under Linux, by default files are accessed via the page cache
◦ Reads are cached in unused memory
◦ Writes are buffered and flushed in bulk at a later point

• Page cache is only one layer in the storage system
◦ Buffers in user-space, caches in firmware and hardware...

• Direct I/O allows to bypass the page cache
◦ Originally implemented for database applications
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Requirements for Direct I/O (from man 2 open)

• No clear documentation on requirements:
◦ “may impose alignment restrictions on [...]”
◦ “vary by filesystem and kernel version and might be absent entirely”
◦ “handling of misaligned [Direct I/O] also varies”

• Alignment restrictions on...
◦ ... file offset and byte count
◦ ... user-space buffer addresses

• General advice: offsets, lengths, and addresses should be multiples of
◦ “filesystem block size (typically 4096 bytes)”, or
◦ “logical block size of the block device (typically 512 bytes)”
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Direct I/O for RNTuple

• RNTuple data stored in pages of variable size
◦ Also transparently compressed with unknown compression ratio
◦ Generally not aligned appropriately

• However, synthetic benchmarks showed significant gains for writing
◦ (will come back to Direct I/O for reading at the end)

• Solution to meet alignment requirements: implement buffering in user-space
◦ For writing now done when creating a new file (but not when appending)
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RNTuple Writing with Direct I/O – setup

• Benchmarking server with AMD EPYC 7702P (64 cores / 128 threads)
◦ Running AlmaLinux 9.4, ROOT compiled with GCC 11.4.1
◦ Samsung PM1733 NVMe SSD formatted with ext4

• 4 MiB buffer for writing (tradeoff between size and performance)
◦ Offsets, lengths, and addresses aligned to 4096 bytes (see also next slide)

• Reduced maximum page size to 128 KiB
◦ Fits in L2 cache of benchmark system
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RNTuple Writing with Direct I/O – no compression

• Bandwidth limit: 775 MB/s → more than 3,600 MB/s with Direct I/O!
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RNTuple Writing with Direct I/O – default zstd compression

• Storage bandwidth: after compression, what is written to storage
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RNTuple Writing with Direct I/O – compression algorithms

• Storage bandwidth: after compression, what is written to storage
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1For zstd, ROOT maps level 5 to Zstandard compression level 10.
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RNTuple Writing with Direct I/O – data bandwidth

• Data bandwidth: before compression, what the user fills into RNTuple
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RNTuple Writing with Direct I/O – maximize data bandwidth

• Q: At 128 threads, which compression level gives the highest data bandwidth?
◦ Possible use cases: online data streaming, burst buffering
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1For zstd, ROOT scales the compression level by a factor 2.
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Direct I/O for Reading?

• Similar alignment challenges as for writing
◦ Extend and align buffering for reading, add padding to read requests
◦ Note: need to disable optimized reading with io_uring

• Can observe faster read times in sample analysis benchmarks2 (up to factor 2x)
◦ Small improvements of overall run time for LHCb sample analysis

• Up to 12 % with a single thread and no compression
◦ No gain for ATLAS sample analysis with sparser reading pattern
◦ Reasons: Asynchronous cluster prefetching and reads with io_uring

• Also tested with Analysis Grand Challenge
◦ Dataset of 787 files converted to RNTuple
◦ No statistically significant change in performance

2https://github.com/jblomer/iotools
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Conclusions

• Implemented option for using Direct I/O in RNTuple writing
◦ Demonstrated benefits together with scalable parallel writing
◦ Reaching up to 2.8 GB/s for uncompressed data (can be improved to 3.2 GB/s)
◦ Up to 5 GB/s data bandwidth with cheap compression level

• If you have use cases for high bandwidths with parallel writing, please talk to us!
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