
Reconstruction in Key4hep using Gaudi

Juan Miguel Carceller

CERN, EP-SFT

October 23, 2024

Key4hep

• Turnkey software for future colliders

• Share components to reduce maintenance
and development cost and allow everyone
to benefit from its improvements

• Complete data processing framework, from
generation to data analysis

• Community with people from many
experiments: FCC, ILC, CLIC, CEPC, EIC,
Muon Collider, etc.

• Open biweekly talks with all stakeholders

Framework
(Gaudi)

k4geo

1

https://indico.cern.ch/category/11461/

The Event Data Model in Key4hep: EDM4hep

• Data Model used in Key4hep, it is
the language that all components
must speak

• Classes for physics objects, like
MCParticle, with possible
relations to other objects

• Links between objects

• Objects are grouped in
collections, like
MCParticleColleciton

EDM4hep DataModel Overview (v0.99)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

RecoMCParticleLink

TrackerHitSimTrackerHitLink

CaloHitSimCaloHitLink

CaloHitMCParticleLink

2

Podio
• Podio is the tool used to generate the C++ code for EDM4hep
• The specification is written in YAML

edm4hep::MCParticle:
Description: "The Monte Carlo particle - based on the lcio::MCParticle."
Members:
- int32_t PDG // PDG code of the particle

- int32_t generatorStatus // status of the particle as defined by the generator

- int32_t simulatorStatus // status of the particle from the simulation program

- float charge // particle charge

- float time [ns] // creation time of the particle in wrt. the event

- double mass [GeV] // mass of the particle

- edm4hep::Vector3d vertex [mm] // production vertex of the particle

- edm4hep::Vector3d endpoint [mm] // endpoint of the particle

- edm4hep::Vector3d momentum [GeV] // particle 3-momentum at the production vertex

- edm4hep::Vector3d momentumAtEndpoint [GeV] // particle 3-momentum at the endpoint

- edm4hep::Vector3f spin // spin (helicity) vector of the particle

- edm4hep::Vector2i colorFlow // color flow as defined by the generator

OneToManyRelations:
- edm4hep::MCParticle parents // The parents of this particle

- edm4hep::MCParticle daughters // The daughters this particle

• Podio uses Jinja templates to transform this to C++ code
3

podio::Frame

• The Frame (from podio) is a data container where
collections can be stored

• Support for multithreading

• Typically represents an event but can be anything else

• A backend decides how it is written to a file (ROOT TTrees
most of the time, but can also be RNTuples)

• Takes ownership of the collections

4

podio::Frame

• The Frame (from podio) is a data container where
collections can be stored

• Support for multithreading

• Typically represents an event but can be anything else

• A backend decides how it is written to a file (ROOT TTrees
most of the time, but can also be RNTuples)

• Takes ownership of the collections

Simple interface with get and put

frame.get("MCParticleCollection");

frame.put(std::move(coll), "NewCollection");

Also in python:

from podio.root_io import Reader

reader = Reader('myfile.root')

events = reader.get('events')

for frame in events:

coll = frame.get('MCParticleCollection')

5

The Key4hep Framework

• Gaudi based core framework:

• k4FWCore provides the interface between EDM4hep and Gaudi

• k4Gen for integration with generators

• k4SimGeant4 for integration with Geant4

• k4SimDelphes for integration with Delphes

• k4MarlinWrapper to call Marlin processors

• . . .

6

https://gitlab.cern.ch/gaudi/Gaudi/
https://github.com/key4hep/k4FWCore
https://github.com/HEP-FCC/k4Gen
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/key4hep/k4SimDelphes
https://github.com/key4hep/k4MarlinWrapper

Gaudi

• Event processing framework

• Algorithms are written in C++ and
are configured with steering files
in python

• Data is passed between
algorithms using a Transient
Event Data Store

• Lots of services for
histogramming, logging, etc.

AlgorithmA

Algorithm B

Algorithm C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T4

Data T3, T4

Data T5

Data T1

Data T5 Apparent dataflow

Real dataflow

7

Gaudi in Key4hep

8

Functional algorithms in Gaudi

• Gaudi::Functional algorithms
• Multithreading friendly, no internal state
• Leave details of the framework to the framework

class MySum : public TransformAlgorithm<OutputData(const Input1&, const Input2&)> {
MySum(const std::string& name, ISvcLocator* pSvc)
: TransformAlgorithm(name, pSvc, {

KeyValue("Input1Loc", "Data1"),

KeyValue("Input2Loc", "Data2") },

KeyValue("OutputLoc", "Output/Data")) { }

OutputData operator()(const Input1& in1, const Input2& in2) const override {
return in1 + in2;

}

• Adapted to work in Key4hep with EDM4hep

9

Functional algorithms in Key4hep

• New service, IOSvc, supports multithreading and reading and writing ROOT TTrees and
ROOT RNTuples
• Reading will detect automatically if it’s a TTree or RNTuple

• Two input/output algorithms: Reader and Writer
• Reader will ask IOSvc to read and then will push itself the collections to the store
• Writer will write the collections to a file

• Collections are wrapped in a std::unique_ptr and pushed to the store
• If there is a podio::Frame, some collections may be removed from the store to avoid

double deletions

• Easily change to multithreading by using the Gaudi’s HiveWhiteBoard

10

Functional algorithms in Key4hep: IOSvc
• Example of a steering file

from Gaudi.Configuration import INFO
from Configurables import ExampleFunctionalTransformer
from Configurables import EventDataSvc
from k4FWCore import ApplicationMgr, IOSvc

svc = IOSvc("IOSvc")

svc.Input = "input.root"

svc.Output = "output.root"

transformer = ExampleFunctionalTransformer(

"Transformer", InputCollection=["MCParticles"], OutputCollection=["NewMCParticles"]

)

mgr = ApplicationMgr(

TopAlg=[transformer],

EvtSel="NONE",

EvtMax=-1,

ExtSvc=[EventDataSvc("EventDataSvc")],

OutputLevel=INFO,

)

11

Functional algorithms in Key4hep: IOSvc

• For multithreading, add

evtslots = 6

threads = 6

whiteboard = HiveWhiteBoard("EventDataSvc", EventSlots=evtslots)

slimeventloopmgr = HiveSlimEventLoopMgr("HiveSlimEventLoopMgr")

scheduler = AvalancheSchedulerSvc(ThreadPoolSize=threads)

• Pass it to the ApplicationMgr

mgr = ApplicationMgr(

TopAlg=[transformer],

EvtSel="NONE",

EvtMax=-1,

ExtSvc=[whiteboard],

EventLoop=slimeventloopmgr,

OutputLevel=INFO,

)

12

Functional algorithms in Key4hep: Features

• Support for having as an input an arbitrary number of collections through a std::vector of
collections was required

• Reimplemented the Consumer, Transformer and MultiTransformer from Gaudi
• k4FWCore::Consumer, k4FWCore::Transformer and k4FWCore::MultiTransformer

• Algorithms have now to:
• Pick up multiple collections and store them in a ‘std::vector‘ when reading
• Iterate over the collections and push them individually when pushing a ‘std::vector‘
• Abstracted into a common function for reading and a common function for pushing

13

Functional algorithms in Key4hep: Example

• Using k4FWCore::Consumer

• Does not have any outputs

struct ExampleFunctionalConsumer final : k4FWCore::Consumer<void(const edm4hep::MCParticleCollection& input)> {
ExampleFunctionalConsumer(const std::string& name, ISvcLocator* svcLoc)

: Consumer(name, svcLoc, KeyValues("InputCollection", {"MCParticles"})) {}

void operator()(const edm4hep::MCParticleCollection& input) const override {
if (input.size() != 2) {
throw std::runtime_error("Wrong size of the MCParticle collection");

}

}

};

14

Functional algorithms in Key4hep: Example

• Producer, does not have any inputs

struct ExampleFunctionalProducer final : k4FWCore::Producer<edm4hep::MCParticleCollection()> {
ExampleFunctionalProducer(const std::string& name, ISvcLocator* svcLoc)

: Producer(name, svcLoc, {}, KeyValues("OutputCollection", {"MCParticles"})) {}

edm4hep::MCParticleCollection operator()() const override {
auto coll = edm4hep::MCParticleCollection();
coll.create(1, 2, 3, 4.f, 5.f, 6.f);

coll.create(2, 3, 4, 5.f, 6.f, 7.f);

return coll;
}

};

15

Example with an arbitrary number of collections
• Example: consumer of an arbitrary number of collections

struct ExampleFunctionalConsumerRuntimeCollections final
: k4FWCore::Consumer<void(const std::vector<const edm4hep::MCParticleCollection*>& input)> {

ExampleFunctionalConsumerRuntimeCollections(const std::string& name, ISvcLocator* svcLoc)
: Consumer(name, svcLoc, KeyValues("InputCollection", {"DefaultValue"})) {}

void operator()(const std::vector<const edm4hep::MCParticleCollection*>& input) const override {
if (input.size() != 3) {
throw std::runtime_error("Wrong size of the input vector, expected 3, got " + std::to_string(input.size()));

}

}

};

• In the steering file multiple collections are passed in a list

consumer = ExampleFunctionalConsumerRuntimeCollections(

"Consumer",

InputCollection=["MCParticles0", "MCParticles1", "MCParticles2"],

Offset=0,

)

16

Functional algorithms in Key4hep: backwards compatibility

• Existing algorithms are based on DataHandle and PodioDataSvc for reading and writing

• Question: can we mix old DataHandle based algorithms with new functional algorithms?

• Code has been implemented
• DataHandle based algorithms can fetch data produced by functional algorithms
• Functional algorithms can fetch data produced by DataHandle based algorithms

• Mixing of algorithms is possible

• Multithreading won’t work unless using the new IOSvc

17

Functional algorithms in Key4hep: Usage

• Most existing algorithms use DataHandles and have internal state, so they can’t be run
multithreaded

• More algorithms being implemented as functional algorithms

• Background Overlay: overlay background events on top of signal events, takes an arbitrary
number of input collections and returns an arbitrary number of collections

• Other ported algorithms from the linear collider community: digitizer, Pandora algorithms for
Particle Flow algorithm

• Algorithms for trackers and calorimeters used by FCC people

18

Summary

• New IOSvc, with support for multithreading and reading and writing TTrees and RNTuple

• Support added for functional algorithms in Key4hep
• New algorithms are being implemented as functional algorithms
• Algorithms support reading and pushing arbitrary number of collections
• Already being used in several places

19

Backup

20

Past (and present)
• Using exclusively GaudiAlg
• Custom DataHandle class
• A custom DataWrapper is pushed to the store, thin wrapper of a pointer to a collection
• Two algorithms for IO: PodioInput and PodioOutput and an IO service: PodioDataSvc
• How it works:

• PodioDataSvc holds a podio::Frame (Frame = event) and some metadata. This Frame
owns all the collections

• PodioInput will ask PodioDataSvc to read and register the collections
• [Algorithm execution]. . .
• PodioOutput will use the podio::Frame to write the collections to a file (only those that

we want to write)
• Multiple issues

• Not designed for multithreading
• PodioDataSvc isn’t an implementation of IHiveWhiteBoard 21

Functional algorithms

• Example: producer of an arbitrary number of collections

struct ExampleFunctionalProducerRuntimeCollections final
: k4FWCore::Producer<std::vector<edm4hep::MCParticleCollection>()> {

ExampleFunctionalProducerRuntimeCollections(const std::string& name, ISvcLocator* svcLoc)
: Producer(name, svcLoc, {}, {KeyValues("OutputCollections", {"MCParticles"})}) {}

std::vector<edm4hep::MCParticleCollection> operator()() const override {
const auto locs = outputLocations();
std::vector<edm4hep::MCParticleCollection> outputCollections;

for (size_t i = 0; i < locs.size(); ++i) {
info() << "Creating collection " << i << endmsg;

auto coll = edm4hep::MCParticleCollection();
coll.create(1, 2, 3, 4.f, 5.f, 6.f);

coll.create(2, 3, 4, 5.f, 6.f, 7.f);

outputCollections.emplace_back(std::move(coll));

}

return outputCollections;
}

};

22

