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Motivation

In its standard configuration,
docker run <image nhame> <command>

downloads the entire container image from the registry and (Frontiers in Big Data Vol. 4 (2021) 673163
unpacks it on disk before executing the actual command in the
started container CMS Higgs l 1.7%

A typical container image used for physics analysis (important e.g. RORH Beeeio J 30.3%

for analysis reusability) has a size of ~gigabytes
gcc 10.20( 4 9%

Executing containerised workloads on batch systems can therefore Python 3.9| 3 6%
. i 0
lead to hundreds of parallel downloads of several gigabytes of data Legacy
CentOS 7| 3.5% Snapshotter
o . . o : : . | | ' ! | 1
However, only a fraction of the container image is actually 0 5000 2000
heeded Data downloaded [megabytes]

> download only what is actually needed
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https://doi.org/10.3389/fdata.2021.673163

Lazy-pulling of container images

Lazy-pulling = pull/download only what is needed

Container reminder:

> A container is a set of tar-balls plus a manifest (list)

> Downloading and extracting the layers builds the
container file system

Lazy pulling mounts (rootfs snapshots as FUSE
and downloads) accessed file contents
on-demand

> Can start container almost immediately

> Can be slower during execution

layer =
tarball (+compression)
&Z SN
.~ bin/bash
bin/ls ”
GET /v2/<image-name>/blobs/ 2
: .f - etc/passwd
B SRR etc/group
- usr/bin/apt
[K. Tokunaga]

Standard Registries | Node
(e.g. Docker Hub)

Kubelet, etc.

:nntainerm

Stargz
Snapshotter

stargz
images

.

Mount rootfs as FUSE
pulling file contents on demand

still pullable/runnable implemented as a
by legacy runtimes remote snapshotter plugin
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Implementations of lazy pulling

Solutions are implemented as so-called image snapshotters for use with containerd

Evaluated tools:

> Stargz snapshotter: use images in searchable tar.gz format

> SOCI snapshotter: add separate index artifact to image (hosted in registry)
> CVMES snapshotter: use unpacked images on CVMFS

> Overlayfs snapshotter: the default/legacy, non-lazy-loading snapshotter

All snapshotters will fallback to legacy pulling if image (or layer) not available in required format
> Enables use of “protected” layers based on public base images

> Mind: this is something Singularity/Apptainer cannot do

Side note: “lazy pulling” with Apptainer achieved through unpacked images on CVMFS
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https://containerd.io/
https://github.com/containerd/stargz-snapshotter
https://github.com/awslabs/soci-snapshotter
https://cvmfs.readthedocs.io/en/latest/cpt-containers.html#containerd-snapshotter-plugin-pre-production
https://github.com/containerd/fuse-overlayfs-snapshotter
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Benchmarking approach

Use typical particle physics tasks and container images, e.g.:
>ROOT
> Python

Using nerdctl to run workloads with the various snapshotters: nEF m Etl.

> Parse execution log files to extract timestamps

> Monitor traffic using network monitoring tools

> Repeat process several times, clear cache in between runs

*

» HARBOR

Using local PC in connection with both a local (same machine) registry, and Harbor registry (in the
same network).

Also compare to “legacy” approach pulling entire image before execution

Using squid proxy for CVMFES caching (with images pre-cached)
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https://github.com/containerd/nerdctl
https://goharbor.io/
https://www.squid-cache.org/

Results: python image: print() — remote registry/cache PSI
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Results: python image: print() — remote registry/cache

I | python:3.9 python:3.9
Inear scale = python-prin dark=pull, medium=create, light=run
| B python-print
3005— 15 -
m i
s - ]
';' 200 - w 10 -
8 g
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0- vy OOKK ol —1 1
Z 102 Observations:
s > Time to start image drastically reduced for all
- . lazy snapshotters
108 _ — > Only a few megabytes downloaded
overlayfs cvmfs-snapshotter stargz soci
loa scale (default) > SOCI snapshotter loads more data because of
g | Snapshotter

layer minimum size requirement (configurable)
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Results: python image: print() — local registry/cache PSI
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Results: python image: print() — local registry/cache PSI
_ python:3.9 python:3.9
linear scale s pyihon-print dark=pull, medium=create, light=run
) B python-print
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7 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024



Results: ROOT image (1)

Iineér scale root:6.32.04-ubuntu24.04

B bin-bash s python-print B root-python B root-fillrandom

Investigate performance with workloads of

.t Increasing complexity:
n M /bin/bash
" print() in python
II Il import ROOT in python
200 - | .
o ___Il ___II - B fillrandom.py using pyROOT

Data [MB]
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103;
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IOg Scale (default)

Snapshotter
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Results: ROOT image (2) PSI

inear scale  root:6.32.04-ubuntu24.04
dark=pull, medium=create, light=run

Investigate performance with workloads of
B bin-bash B python-print B root-python B root-fillrandom

Increasing complexity:

& /bin/bash

U print() in python

Il import ROOT in python

M fillrandom.py using pyROOT

o Observations
> CVMFS snapshotter faster than other two lazy
snapshotters
> For complex workloads, pull time small
lll. IIII compared to execution time (but mind
overlayfs cvmfs-snapshotter stargz SOCI Significant data SaVingS!)
log scale  (defauly

Snapshotter
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Usability today

rootless docker available since RHEL 8 and kernel 4.18/5.11 — still requires (cluster) admin action

Use of Stargz snapshotter requires images to be converted (programatically) to a specific format >
adoption might be slow/difficult

SOCI snapshotter only requires small addition to existing image—however, only certain registries
support additional artifacts (Harbor §4, GitLab X)

CVMEFS snapshotter requires images to be “unpacked” - delay between building them and having
them available (and they need to be added to the unpacker “sync” list)
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https://docs.docker.com/engine/security/rootless/
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Example configurations for docker and kubernetes

containerd configs for CVMFS snapshotter: kubernetes (k3s) CVMES snapshotter config:
1 # /etc/contalnerd/config.toml
2 version = 2
3 25 # /var/lib/rancher/k3s/agent/etc/containerd/config.toml.tmpl
4 # Ask containerd to use this particular snapshotter . version = 2
: . : - . 27 [plugins."io.containerd.grpc.vl.cri".containerd]
5 [plugins."io.containerd.grpc.vl.cri".containerd]
o . 28 snapshotter = "cvmfs-snapshotter"
6 snapshotter = "cvmfs—snapshotter _ ,
_ 29 disable_snapshot_annotations = false
7 # important: the cvmfs snapshotter needs .
_ 30 [proxy_plugins]
8 # annotations to work. 31 [proxy_plugins.cvmfs—-snapshotter]
9 disable_snapshot_annotations = false 32 type = "snapshot"
10 33 address = "/run/containerd-cvmfs—grpc/containerd-cvmfs—grpc.sock"
11 # Set the communication endpoint between containerd 34 [plugins."io.containerd.grpc.vl.cri".cni]
12 # and the snapshotter 35 bin_dir = "/var/lib/rancher/k3s/data/current/bin"
13 [proxy_plugins] 36 conf_dir = "/var/lib/rancher/k3s/agent/etc/cni/net.d"
14 [proxy_plugins.cvmfs—snapshotter]
15 type = "snapshot"
16 address =
17 "/run/containerd-cvmfs—-grpc/containerd-cvmfs—grpc.sock"

19 # /etc/containerd-cvmfs—grpc/config.toml

20 # Source of image layers

21 repository = "unpacked.cern.ch"

22 absolute-mountpoint = "/cvmfs/unpacked.cern.ch"
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https://cvmfs.readthedocs.io/en/stable/cpt-containers.html#running-with-k3s

Conclusions

Container image snapshotters open up new possibilities
for image distribution and access

> Significant bandwidth/data savings observed

> Time saving depends on workload/image details

Overall, evaluated snapshotters all have advantages and
disadvantages in usability/requirements

Performance similar

> CVMEFES snapshotter seems to be a bit faster than the
other two snapshotters evaluated
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