October 19 - 25, 2024

CHEP
2024

Efficient and fast container
execution using image
shapshotters

Max Fatouros, Derek Feichtinger, Clemens Lange (PSl)
Jakob Blomer, Amal Thundiyil, Valentin Volkl (CERN)
CHEP2024, 22nd October 2024

PSI

Motivation

In its standard configuration,
docker run <image nhame> <command>

downloads the entire container image from the registry and (Frontiers in Big Data Vol. 4 (2021) 673163
unpacks it on disk before executing the actual command in the
started container CMS Higgs l 1.7%

A typical container image used for physics analysis (important e.g. RORH Beeeio J 30.3%

for analysis reusability) has a size of ~gigabytes
gcc 10.20(4 9%

Executing containerised workloads on batch systems can therefore Python 3.9| 3 6%
. i 0
lead to hundreds of parallel downloads of several gigabytes of data Legacy
CentOS 7| 3.5% Snapshotter
o . . o : : . | | ' ! | 1
However, only a fraction of the container image is actually 0 5000 2000
heeded Data downloaded [megabytes]

> download only what is actually needed

2 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

https://doi.org/10.3389/fdata.2021.673163

Lazy-pulling of container images

Lazy-pulling = pull/download only what is needed

Container reminder:

> A container is a set of tar-balls plus a manifest (list)

> Downloading and extracting the layers builds the
container file system

Lazy pulling mounts (rootfs snapshots as FUSE
and downloads) accessed file contents
on-demand

> Can start container almost immediately

> Can be slower during execution

layer =
tarball (+compression)
&Z SN
.~ bin/bash
bin/ls ”
GET /v2/<image-name>/blobs/ 2
: .f - etc/passwd
B SRR etc/group
- usr/bin/apt
[K. Tokunaga]

Standard Registries | Node
(e.g. Docker Hub)

Kubelet, etc.

:nntainerm

Stargz
Snapshotter

stargz
images

.

Mount rootfs as FUSE
pulling file contents on demand

still pullable/runnable implemented as a
by legacy runtimes remote snapshotter plugin

3 Clemens Lange — Efficient and fast container execution using image snapshotters

22.10.2024

Implementations of lazy pulling

Solutions are implemented as so-called image snapshotters for use with containerd

Evaluated tools:

> Stargz snapshotter: use images in searchable tar.gz format

> SOCI snapshotter: add separate index artifact to image (hosted in registry)
> CVMES snapshotter: use unpacked images on CVMFS

> Overlayfs snapshotter: the default/legacy, non-lazy-loading snapshotter

All snapshotters will fallback to legacy pulling if image (or layer) not available in required format
> Enables use of “protected” layers based on public base images

> Mind: this is something Singularity/Apptainer cannot do

Side note: “lazy pulling” with Apptainer achieved through unpacked images on CVMFS

4 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

https://containerd.io/
https://github.com/containerd/stargz-snapshotter
https://github.com/awslabs/soci-snapshotter
https://cvmfs.readthedocs.io/en/latest/cpt-containers.html#containerd-snapshotter-plugin-pre-production
https://github.com/containerd/fuse-overlayfs-snapshotter

PSI

Benchmarking approach

Use typical particle physics tasks and container images, e.g.:
>ROOT
> Python

Using nerdctl to run workloads with the various snapshotters: nEF m Etl.

> Parse execution log files to extract timestamps

> Monitor traffic using network monitoring tools

> Repeat process several times, clear cache in between runs

*

» HARBOR

Using local PC in connection with both a local (same machine) registry, and Harbor registry (in the
same network).

Also compare to “legacy” approach pulling entire image before execution

Using squid proxy for CVMFES caching (with images pre-cached)

5 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

https://github.com/containerd/nerdctl
https://goharbor.io/
https://www.squid-cache.org/

Results: python image: print() — remote registry/cache PSI

I | | python:3.9 python:3.9
Inéar scaie s pythonprint dark=pull, medium=create, light=run
B python-print
300 - 15
) Z
=]
© 200 - % 10 I
s £
|_ :
100 - 5 -
SN |
0 =
l 101:-
m 10° _—
=, @,
)
% . |
D |_ -
B rnn 1
overlayfs cvmfs-snapshotter stargz soci overlayfs cvmfs-snapshotter stargz soci
I I (default) (default)
09 scal © Snapshotter Snapshotter

6 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: python image: print() — remote registry/cache

I | python:3.9 python:3.9
Inear scale = python-prin dark=pull, medium=create, light=run
| B python-print
3005— 15 -
m i
s -]
';' 200 - w 10 -
8 g
100:— - 5
0- vy OOKK ol —1 1
Z 102 Observations:
s > Time to start image drastically reduced for all
- . lazy snapshotters
108 _ — > Only a few megabytes downloaded
overlayfs cvmfs-snapshotter stargz soci
loa scale (default) > SOCI snapshotter loads more data because of
g | Snapshotter

layer minimum size requirement (configurable)

6 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: python image: print() — local registry/cache PSI
. python:3.9 python:3.9
linear scale m= python-print dark=pull, medium=create, light=run
' B python-print
300 - 12.5;—
0] : |
=) 10.0 -
' 200 - D ;
8 g
100 - — 50
2.5?—
0- vy e R - e . I
101
m 10°: .
=, @,
£ £
O =
10 -
: - KKK KK X
overlayfs cvmfs-snapshotter stargz SOCI overlayfs cvmfs-snapshotter stargz SOCi
Iog scale (default) (default)
Snapshotter Snapshotter

7 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: python image: print() — local registry/cache PSI
_ python:3.9 python:3.9
linear scale s pyihon-print dark=pull, medium=create, light=run
) B python-print
300} l 12’5; .
o |
=) 10.0 -
= 200 - L
= _ O 7.5-
0 : £]
100 - — 50
f 25"
0 vy e RRRRXX - e . I
3 102 Observations:
g > \Very similar behaviour w.r.t. remote registry/
- cache
10'- - > Slightly faster due to reduced network
o:j/g;;auyﬁs cvmfs-snapshotter stargz SOCi over h es d
log scale

Snapshotter

7 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: ROOT image (1)

Iineér scale root:6.32.04-ubuntu24.04

B bin-bash s python-print B root-python B root-fillrandom

Investigate performance with workloads of

.t Increasing complexity:
n M /bin/bash
" print() in python
II Il import ROOT in python
200 - | .
o ___Il ___II - B fillrandom.py using pyROOT

Data [MB]
(@)
S

N
&
=

103;
Observations:
= - > Comparable performance
S Il >import ROOT loads a lot of data
101;'
: IIII' lIIIl

overlayfs cvmfs-snapshotter stargz SOCI

IOg Scale (default)

Snapshotter

8 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: ROOT image (2) PSI

inear scale root:6.32.04-ubuntu24.04
dark=pull, medium=create, light=run

Investigate performance with workloads of
B bin-bash B python-print B root-python B root-fillrandom

Increasing complexity:

& /bin/bash

U print() in python

Il import ROOT in python

M fillrandom.py using pyROOT

o Observations
> CVMFS snapshotter faster than other two lazy
snapshotters
> For complex workloads, pull time small
lll. IIII compared to execution time (but mind
overlayfs cvmfs-snapshotter stargz SOCI Significant data SaVingS!)
log scale (defauly

Snapshotter

9 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Usability today

rootless docker available since RHEL 8 and kernel 4.18/5.11 — still requires (cluster) admin action

Use of Stargz snapshotter requires images to be converted (programatically) to a specific format >
adoption might be slow/difficult

SOCI snapshotter only requires small addition to existing image—however, only certain registries
support additional artifacts (Harbor §4, GitLab X)

CVMEFS snapshotter requires images to be “unpacked” - delay between building them and having
them available (and they need to be added to the unpacker “sync” list)

1 O Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

https://docs.docker.com/engine/security/rootless/

PSI

Example configurations for docker and kubernetes

containerd configs for CVMFS snapshotter: kubernetes (k3s) CVMES snapshotter config:
1 # /etc/contalnerd/config.toml
2 version = 2
3 25 # /var/lib/rancher/k3s/agent/etc/containerd/config.toml.tmpl
4 # Ask containerd to use this particular snapshotter . version = 2
: . : - . 27 [plugins."io.containerd.grpc.vl.cri".containerd]
5 [plugins."io.containerd.grpc.vl.cri".containerd]
o . 28 snapshotter = "cvmfs-snapshotter"
6 snapshotter = "cvmfs—snapshotter _ ,
_ 29 disable_snapshot_annotations = false
7 # important: the cvmfs snapshotter needs .
_ 30 [proxy_plugins]
8 # annotations to work. 31 [proxy_plugins.cvmfs—-snapshotter]
9 disable_snapshot_annotations = false 32 type = "snapshot"
10 33 address = "/run/containerd-cvmfs—grpc/containerd-cvmfs—grpc.sock"
11 # Set the communication endpoint between containerd 34 [plugins."io.containerd.grpc.vl.cri".cni]
12 # and the snapshotter 35 bin_dir = "/var/lib/rancher/k3s/data/current/bin"
13 [proxy_plugins] 36 conf_dir = "/var/lib/rancher/k3s/agent/etc/cni/net.d"
14 [proxy_plugins.cvmfs—snapshotter]
15 type = "snapshot"
16 address =
17 "/run/containerd-cvmfs—-grpc/containerd-cvmfs—grpc.sock"

19 # /etc/containerd-cvmfs—grpc/config.toml

20 # Source of image layers

21 repository = "unpacked.cern.ch"

22 absolute-mountpoint = "/cvmfs/unpacked.cern.ch"

1 1 Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

https://cvmfs.readthedocs.io/en/stable/cpt-containers.html#running-with-k3s

Conclusions

Container image snapshotters open up new possibilities
for image distribution and access

> Significant bandwidth/data savings observed

> Time saving depends on workload/image details

Overall, evaluated snapshotters all have advantages and
disadvantages in usability/requirements

Performance similar

> CVMEFES snapshotter seems to be a bit faster than the
other two snapshotters evaluated

1 2 Clemens Lange — Efficient and fast container execution using image snapshotters

et 2 L E L

CONTAINER

P

-
'CONTAINERD

22.10.2024

