
Efficient and fast container
execution using image
snapshotters

Jakob Blomer, Amal Thundiyil, Valentin Völkl (CERN)
CHEP2024, 22nd October 2024

Max Fatouros, Derek Feichtinger, Clemens Lange (PSI)

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Motivation

In its standard configuration,
 docker run <image name> <command>
downloads the entire container image from the registry and
unpacks it on disk before executing the actual command in the
started container

A typical container image used for physics analysis (important e.g.
for analysis reusability) has a size of ~gigabytes

Executing containerised workloads on batch systems can therefore
lead to hundreds of parallel downloads of several gigabytes of data

However, only a fraction of the container image is actually
needed

2

[Frontiers in Big Data Vol. 4 (2021) 673163]

→ download only what is actually needed

https://doi.org/10.3389/fdata.2021.673163

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Lazy-pulling of container images

3

[K. Tokunaga]

Lazy-pulling = pull/download only what is needed

Container reminder:
>A container is a set of tar-balls plus a manifest (list)
>Downloading and extracting the layers builds the

container file system

Lazy pulling mounts (rootfs snapshots as FUSE
and downloads) accessed file contents
on-demand
>Can start container almost immediately
>Can be slower during execution

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Implementations of lazy pulling

Solutions are implemented as so-called image snapshotters for use with containerd

Evaluated tools:
>Stargz snapshotter: use images in searchable tar.gz format
>SOCI snapshotter: add separate index artifact to image (hosted in registry)
>CVMFS snapshotter: use unpacked images on CVMFS
>Overlayfs snapshotter: the default/legacy, non-lazy-loading snapshotter

All snapshotters will fallback to legacy pulling if image (or layer) not available in required format
>Enables use of “protected” layers based on public base images
>Mind: this is something Singularity/Apptainer cannot do
Side note: “lazy pulling” with Apptainer achieved through unpacked images on CVMFS

4

https://containerd.io/
https://github.com/containerd/stargz-snapshotter
https://github.com/awslabs/soci-snapshotter
https://cvmfs.readthedocs.io/en/latest/cpt-containers.html#containerd-snapshotter-plugin-pre-production
https://github.com/containerd/fuse-overlayfs-snapshotter

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Benchmarking approach

Use typical particle physics tasks and container images, e.g.:
>ROOT
>Python

Using nerdctl to run workloads with the various snapshotters:
>Parse execution log files to extract timestamps
>Monitor traffic using network monitoring tools
>Repeat process several times, clear cache in between runs
Also compare to “legacy” approach pulling entire image before execution

Using local PC in connection with both a local (same machine) registry, and Harbor registry (in the
same network).
Using squid proxy for CVMFS caching (with images pre-cached)

5

https://github.com/containerd/nerdctl
https://goharbor.io/
https://www.squid-cache.org/

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: python image: print() — remote registry/cache

6

linear scale

log scale

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: python image: print() — remote registry/cache

6

linear scale

log scale

Observations:
>Time to start image drastically reduced for all

lazy snapshotters
>Only a few megabytes downloaded
>SOCI snapshotter loads more data because of

layer minimum size requirement (configurable)

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: python image: print() — local registry/cache

7

linear scale

log scale

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: python image: print() — local registry/cache

7

linear scale

log scale

Observations:
>Very similar behaviour w.r.t. remote registry/

cache
>Slightly faster due to reduced network

overhead

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: ROOT image (1)

Investigate performance with workloads of
increasing complexity:

 /bin/bash
 print() in python
 import ROOT in python
 fillrandom.py using pyROOT

Observations:
>Comparable performance
> import ROOT loads a lot of data

8

linear scale

log scale

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Results: ROOT image (2)

Investigate performance with workloads of
increasing complexity:

 /bin/bash
 print() in python
 import ROOT in python
 fillrandom.py using pyROOT

Observations:
>CVMFS snapshotter faster than other two lazy

snapshotters
>For complex workloads, pull time small

compared to execution time (but mind
significant data savings!)

9

linear scale

log scale

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Usability today

rootless docker available since RHEL 8 and kernel 4.18/5.11 — still requires (cluster) admin action

Use of Stargz snapshotter requires images to be converted (programatically) to a specific format →
adoption might be slow/difficult

SOCI snapshotter only requires small addition to existing image—however, only certain registries
support additional artifacts (Harbor ✅, GitLab ❌)

CVMFS snapshotter requires images to be “unpacked” → delay between building them and having
them available (and they need to be added to the unpacker “sync” list)

10

https://docs.docker.com/engine/security/rootless/

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Example configurations for docker and kubernetes

containerd configs for CVMFS snapshotter:

11

kubernetes (k3s) CVMFS snapshotter config:

https://cvmfs.readthedocs.io/en/stable/cpt-containers.html#running-with-k3s

Clemens Lange — Efficient and fast container execution using image snapshotters 22.10.2024

Conclusions

Container image snapshotters open up new possibilities
for image distribution and access
>Significant bandwidth/data savings observed
>Time saving depends on workload/image details

Overall, evaluated snapshotters all have advantages and
disadvantages in usability/requirements

Performance similar
>CVMFS snapshotter seems to be a bit faster than the

other two snapshotters evaluated

12

