New RooFit PyROOT interfaces for
connections with Machine Learning

Robin Syring, Jonas Rembser, Lorenzo Moneta

23 October, CHEP 2024

ROOT

Data Analysis Framework

https://root.cern

https://root.cern

Introduction to RooFit

. . - . = FATLAS 2on1 2012 | _op
» RooFit: C++ library for statistical data analysis in ROOT 8 F ts-7Tev fldt-4c4s’ - Exp E
. o 0. .. E \s=8TeV: [Ldt=585.91b" D+io 3
e provides tools for model building, fitting and statistical tests -
» Recent development focused on: I
e Performance boost (preparing for larger datasets of HL-LHC) (.5 = /7
e More user friendly interfaces and high-level tools oo
0'E
. . e =
In this presentation we're showing how targeted new features like R T T I T Ty
using Python functions inside RooFit can unlock the world of my [GeV]
Simulation Based Inference (SBI) in RooFit
8 R SEE T T e,
© 120
A A 7z i
. . . o Q. c
This talk builds on top of RooFit developments shown at previous 7 ok Nz 1
conferences: S S . \/ 1°
101 —tss
» ACAT 2021 talk showcasing pythonizations - -
» CHEP 2023 talk presenting new vectorizing RooFit — 1%
1()'10 [|-=--= Exp.for SMH "“ —
. R - L

110 115 120 125 130 135 14 145
m, (GeV) 2

https://indico.cern.ch/event/855454/contributions/4596763/
https://indico.jlab.org/event/459/contributions/11570/

Simulation Based Inference (SBI)

» In case where you don't have barameteref
analytic models for probability, but
ou can sample with MC simulators
y P "

0,4 R

Observables x

> Learn (parametrized) likelihood [EENES R
ratio to do parameter estimation x|
without any histograms

v
v

Augmented data
r(x,z|0),t(x,z|90)

Figure borrowed from Alexander Held’s talk at the PHYSTAT-SBI 2024 workshop

NLL(6) = — 3, log p(z;6)
\ Z lOg p(ml|9) //ear; likelihood ratio from MC

likelihood ratio trick Dref x2|9) samples

https://indico.cern.ch/event/1355601/contributions/5812026/attachments/2857980/4999462/20240516_SBI_meets_reality_HEP%20(1).pdf
https://indico.cern.ch/event/1355601/timetable/?view=standard_numbered

Our Goals

1. Enable SBI in RooFit and show tutorial with most basic example

2. Demonstrate our users how they can avoid shortcomings of histogram-based strategies
with SBI (in particular curse of dimensionality)

3. Create more advanced example with real LHC data

4. Spread the word and gather feedback to guide future development

>
>

Tutorial idea:

>

The Hello World of SBI - 1D fit with one parameter

Our “Hello world”: Gaussian with one
parameter and uniform reference distribution
Simple to sample from these distributions ian(z: | n.o—
e butdon't sample too much, in real life NLL(p) = —>_;1 Gauz:ifgiﬂi’j >
sampling is expensive
We also have analytical NLL for reference
Implemented in the rf615 tutorial

analytical

SBI

MC samples with floating x and mu from |

Gaussian and from uniform NLL(p) = — Y log s(zilu)
. . e (1—s(z;i|p)

train conditional MLP classifier: s(x, mu)

Create yet another MC sample with fixed mu:

the “observed data”

Use classifier score for parameter inference

https://root.cern/doc/master/rf615__simulation__based__inference_8py.html

The Hello World of SBI - Results

» We used 40000 MC samples for training
» Classifier trained naively, no hyperparam. tuning NLL(p) = — ¥, log %
. . . o —S\Z;
» Real likelihood ratio approximated well a
» Compared with traditional template morphing: o
. NLL sum over plot with fixed mu for
® Both SBI and morphlng dO We” “observed” data validation
NLL of SBI vs. Morphing
e Likelihood ratio r(x| p=2.5)
z —— learned (SBI) E i
linear morphing 25k — true NLL 92 5:— o Iearned. (SBl)
g F i —— moment morphing a® r SR
006/~ 2or i using MLPClassifier
E - C from sklearn
vo5:— 15| B
osf- g 3
} E 10} C
0035— E 2—_
0.021— 5:_ E
0,015— R A ol o M - AT R 1_— v'
E 8.2 23 2.4 25 2.6 2.7, m2u.8 C \
[}_4 -2 OIII£III4 6 X o:lllIL-jllllllllI|III\KMIIII|III|III|I
template morphing illustration (see also this presentation) S B

https://indico.cern.ch/event/507948/contributions/2028505/attachments/1262169/1866169/atlas-hcomb-morphwshop-intro-v1.pdf

Extending to multiple dimensions

Likelihood ratio r(x1|u1=2.5)

» Therf617 tutorial extends the previous S ~ leamed (58
example to 2D: = £ oo
e two uncorrelated Gaussians for x1, x1 25t i
with params mu1 and mu2 A :
» Everything else the same, also the number of i
toy MC samples for training (40000 samples) £
» SBI model has to learn larger phasespace: s
performance deteriorates a bit TN ANy, SN
» Template morphing approach suffers blgger WLLiarieRl Ve, Merphing k
hit in accuracy as expected — leamed (58
~—— true NLL
2000 —\ —— moment morphing

moment morphing suffers curse

This confirms that SBI is very useful for likelihoods ™ of dimensionality!

with many parameters and observables

500

https://root.cern/doc/master/rf617__simulation__based__inference__multidimensional_8py.html

Higgs to four leptons open data example

The output of the RDataFrame tutorial df106, based on

What about realistic usecases and real data? ATLAS Open Data
w 35
= —— Data
(0] = Higgs MC
T 30 ATLAS Open Dzita . oMo
fs=13TeV, 10fb = Other MG

Total MC Variations Down

Usecase: quick histogram-free statistical analysis of
Higgs to four leptons in ATLAS Open Data

25

Total MC Variations Up

VZZ Total MC Uncertainty

» Prediction is given by a stack of MC samples 3

> One observable: m4/ =
» One parameter: scaling of the signal part, aka. signal 10
strength mu

80 90 100 110120 130 140 150 160 170
mii~> %2 [GeV]

https://root.cern.ch/doc/master/df106__HiggsToFourLeptons_8py.html

Higgs to four leptons result

Likelihood ratio r(m4||u=1)

» The rf618 tutorial shows this analysis, which follows up on the
dataframe tutorial
e First RooFit tutorial that uses open data!
» The final likelihood ratio is implemented with the mixture model
formula as a function of signal strength and classifiers to
discriminate MC samples

p(p=1)/p(p=0)

e Like this, no parametrized classifier is required osE xGBClassifier + mixture model
» Results agree with what is expected after visually inspecting the b)
histograms "
p(xl6o) >, we(bo)pe(x60) s
p(x[01) Y. We (61)pe (x[61) e

Ny

i
Z c’ ‘91 pc’ X|61)
= We 90 pc(X|90)

-imixture model formula
from this paper

We 90 pc(Scc (X 90,91)|90

-]

Z We! 91)Pc Se,c! (X 90,91)|91)]

cl

3 35 4 9
1 (signal strength)

https://root.cern/doc/master/rf618__mixture__models_8py.html
https://arxiv.org/pdf/1506.02169

Vectorized Python functions in RooFit

Set up RooRealVars before: m4l, mu, n_sig, n_bkg

> ROOF't can now Wrap Python def 1llr zz vs higgs f(m4l: np.ndarray) -> np.ndarray:
functions that take and return prob = model xgb.predict proba(mdl.T)[:, 0]
NumPy arrays return (1 - prob) / prob

> |n the Open Data tUt0r|a|, thIS |S def mixture model f(llr: np.ndarray, mu: np.ndarray) -> np.ndarray:

used thce: return ... # some numpy code (note that mu is 1D ndarray)
® Wrap the XGBoos.t CIaSSIerr 1lr zz vs_higgs = RooFit.bindFunction("llr zz vs_higgs" , 1llr zz vs higgs_f,
e implement the mixture nal)

model llr mixture = RooFit.bindFunction("llr mixture", llr mixture model f, 1lh, mu)

> Fma”y: we pretend to ROOFIt the pdf = RooWrapperPdf ("pdf", "", llr mixture, selfNormali}sd:\Truénickto bypas; '
likelihood ratio is a normalized auto-normalization

better do extended fit
pdf . n_pred = RooFormulaVar("n pred", "n bkg + mu * n _sig" , [mu, n_sig, n_bkgl])
> We can then use Other ROOFIt pdf extended = RooExtendPdf ("pdf extended", "", pdf, n pred)
features, like extended
IIkeIIhOOd flts nll = pdf extended .createNLL (data)

10

Useful pythonizations for these workflows

Which PyROOT features enabled these workflows?

Demo 1: std::function pythonization

» Callbacks to Python from C++ code in PYROOT, s cunterprecer.secrare(moe
preferably done either by: ke ot 1 o) |
e std::function<T> pythonization return func(2);
e virtual dispatching by inheriting from C++ o
C|aSS |n Python print (ROOT.myfunc (lambda x: x * x))
» Note: implementing callback mechanisms via the
CPython APl is more error prone

» Copy-free data transfer between C++ and Python: ... ca. |

Demo 2: C++ virtual dispatching from Python classes

e Python to C++: Implicit conversion from pntics
void talk() { std::cout << getSpeech() << std::endl; }
NumPy arrays to c-style arrays virtual std::string getSpeech() { return "I'm base!"; }

}i

e (++to Python: Python buffer interface o
Support for C_Style arrays class MyDerivedClass (ROOT .MyBaseClass) :
e See backup for example def getspeech (self)

return "I'm derived in Python!"

Step up your own interoperability game with this tech! . ociveaciass o caeo

11

RooFits vectorized evaluation interface

» N eW Vecto r i Zi ng Roo F it eva I u a t i O n i n te rfa ce: RooFit/HistFactory stress tests: speedup of NLL minimization by using BatchMode("cpu")
presented at previous conferences, provides great e
speedup, the default since ROOT 6.32 GrcisiCbes sty

Extended ML fits to addition operator pdfs

» Requires implementing this method in your RooFit i e
. - Conditional use of F(x|y)
class, which fills computation result into context object: ot e i et

Fit in multiple rectangular ranges

Pdf ion through i

® void RooAbsReal: :doEval (o e
. 'Simu\(anenus pdf op(er;n:;
RooFit::EvalContext & ctx Alilaryobienablo Corsalis

Fit Result functionality

Efficiency operator pdf 1D

) Efficiency operator pdf 2D
Efficiency product operator pdf

Amplitude sum operator pdf

Linear morph operator pdf

Automated MC studies

MC Study with chi*2 calculator

MC Study with param rand and Z calc

» This is used together with C++ virtual dispatching from N Suses i s oo
Python to implement our usecase:
® ROOPYBlHd' C++ ClaSS that Imp|ementS What Atlas Higgs Model benchmark - single minimization
RooFit requires and has a new virtual evaluation Tme | nmzeten e 8 Seedno e
method for intended override in Python
e Pythonization of RooFit: :bindFunction does
the rest

6 8 10 12
Relative Speedup [old/new]

75
50

25

Time (seconds)

Without interface for vectorized evaluation, the SBI ;

Legacy CPU CPU
(ROOT 6.30 defaul)y (ROOT 6.32 default)

Integratlon WOUId nOt have been pOSSibIe. Final Min Val = -368.36 for all evaluations
12

Our efforts to be more inviting for developers

We want to make contributing to RooFit's C++ and Python code as easy as possible:

» Standalone RooFit build on top of existing ROOT installation

» Workflow to develop RooFit pythonizations without having to build any part of the ROOT
CMake project

13

https://github.com/guitargeek/roofit
https://github.com/root-project/root/pull/16608
https://github.com/root-project/root/pull/16608

Conclusions and outlook

» New pythonizations allow you to wrap Python functions that work with NumPy arrays
inside RooFit

» Main intended use: bring ML models trained with Python libraries inside your RooFit
model to do neural simulation based inference

» New tutorials show this for three examples of increasing complexity:
e 1D Gaussian fit with one parameter and Multidimensional Gaussian fit
e Mixture model fit to open Higgs to four leptons data

» Many possible ways to continue based on eventual user demand:
e New RooFit classes for operations with neural likelihood ratios (like mixture model)?
e Support specific usehases like EFT analysis?
e Enable serialization of SBI models with RooWorkspace?

This is mostly new territory, easy for early adopters and contributors to make an impact!

14

Backup - Data transfer between Python and C++ with NumPy arrays

ROOT .gInterpreter.Declare("""

class Squarer {
public:

Squarer (std::size_t n) : fBuffer(n) {}

double * call (double * x) {
for (std::size t i = 0; i < fBuffer.size(); ++i) {
fBuffer[i] x[1] * x[i];

}
return fBuffer.data();

private:
std::vector<double> fBuffer;
}i

nny

arr = np.array([1., 2., 3.1, dtype=np.float64)

squarer

ROOT .Squarer (len (arr))

Pass NumPy array, and also create new NumPy array from output.

Conversions are zero-copy operations!

arr_square = np.frombuffer (squarer.call (arr), dtype=np.float64, count=len (arr))

print (arr_square)

15

