
○ FCC

21 August 2024 – Fcc-ee Optics Design Meeting **Ghislain ROY**

UPDATE ON RF GEOMETRY

gratefully acknowledging discussions with Christian Carli and Kevin André

RF geometry schematics

V24.3_GHC at Z, W

S (m)	Location	Length (m)	
0	End Arc		End of regular arc cells – entering dispersion suppressor
171.574	Start Sep	171.574	Match arc to RF incl. to zero dispersion; move beam to transverse pos.
289.060	End Sep	117.486	Electro-Magneto switch (No net force on incoming beam)
293.900	Start e+RF	4.840	
737.144	End e+RF	443.244	33 cryomodules 400 MHz - 2cell
831.205	Start Switch	94.061	
1260.531	End Switch	429.326	960 mm change : 2.238 mrad (10% stronger than arc bends)
1355.125	Start e-RF	94.594	Positron beam goes around the cryostats of electron RF
1798.365	End e-RF	443.240	33 cryomodules 400 MHz - 2cell
1803.205	Start Sep	4.840	
1920.691	End Sep	117.486	Electro-Magneto switch (Full net force on outgoing beam)
2091.435	Start Arc	170.744	Match RF to arc incl. dispersion (helped by start of arc curvature)

4

V24.3_GHC at H

S (m)	Location	Length (m)	
0	End Arc		End of regular arc cells – entering dispersion suppressor
171.574	Start Sep	171.574	Match arc to RF incl. to zero dispersion; move beam to transverse pos.
289.060	End Sep	117.486	Electro-Magneto switch (No net force on incoming beam)
293.900	Start RF	4.840	
737.144	End RF	443.244	33 cryomodules 400 MHz - 2cell
831.205	Start Switch	94.061	
1260.531	End Switch	429.326	960 mm change : 2.238 mrad (10% stronger than arc bends)
1355.125	Start RF	94.594	Positron beam goes around the cryostats of electron RF
1798.365	End e-RF	443.240	33 cryomodules 400 MHz - 2cell
1803.205	Start Sep	4.840	
1920.691	End Sep	117.486	Electro-Magneto switch (Full net force on outgoing beam)
2091.435	Start Arc	170.744	Match RF to arc incl. dispersion (helped by start of arc curvature)

Challenges

FCC

- Is there enough space to have both Z, W and H configs at the same time ?
- Match to arc optics including dispersion in both modes Provided the arcs have the same layout (not optics) for both configs not the case currently with GHC optics
- Path lengths are different in both configs
 - Can we reshape the insertion to have same path lengths in the two configs ? Keep same machine length and synchro with Booster Keep IP to IP path lengths for beam-beam ?
- Beam crossing and long range beam-beam interactions ? At 25 ns bunch spacing, beam encounters spaced by 12.5 ns or 3.75m !
- All 400 MHz modules to be installed upfront
- Impedance ? Intensity limitations at Z ?

Advantages (to be completed)

Integrated Physics Program

- Single configuration does not require shutdown between physics phases; Z to W and W to H
- Possibility to start the Physics Program with H (for example), which could be easier from a machine tuning perspective, and more appealing for a Higgs Factory

Modulation of the physics program from fill to fill.

• Z fills for energy calibration between H fills to improve the energy model