Multi-Proton Zero Pion Cross-Section Measurement with the NuMI Beam

Jack Smedley ICARUS Collaboration Meeting Monday, October 14, 2024

- We just heard from Jaesung about the $v_{\mu}CCNp0\pi$ (N>0)
- Focus on QE-like signal definitions is popular in the field for probing the dominant interaction mode for accelerator neutrino experiments

2

- We just heard from Jaesung about the $v_{\mu}CCNp0\pi$ (N>0)
- Focus on QE-like signal definitions is popular in the field for probing the dominant interaction mode for accelerator neutrino experiments
- As measurements and modeling have improved for QE, the *non-QE* components that come along for the ride are still very uncertain!

 A_{ND}

KTR

- Selecting for $v_{\mu}CC>1p0\pi$ events directly enhances these non-QE interactions
- Sensitivity to processes like 2p2h and pion absorption via final state interactions (FSI), for which we know our models are not sufficient

Differential cross section for multi-proton events extracted from truth-level generator comparisons with the ICARUS NuMI flux

5

- Selecting for $v_{\mu}CC>1p0\pi$ events directly enhances these non-QE interactions
- Sensitivity to processes like 2p2h and pion absorption via final state interactions (FSI), for which we know our models are not sufficient
- Getting this right matters! Interaction model uncertainties only become more relevant as we enter the high-stats era of neutrino oscillation physics!

Literature Review

- One result on multi-nucleon production in argon has been published, a 2014 ArgoNeut paper that identified just 30 events
- \bullet Similar analyses now in development by μBooNE and SBND using the BNB flux
 - Smaller resonant pion absorption contribution due to lower neutrino energy, results will be very complimentary with an ICARUS NuMI measurement!

v_µCC>1p0π Signal Defintion

- A subset of the Np analysis, with the exception of a wider proton momentum range!
- $v_{\mu}CC$ or anti- $v_{\mu}CC$ in FV
- $p_{\mu} > 226 MeV/c,$ ~50cm in LAr
- \bullet At least two protons with p_p from 350MeV/c to 2GeV/c
 - 350MeV/c corresponds to ~3.75cm in LAr
 - Efficiency beyond 2GeV/c is negligible
- Any number of neutrons or below-threshold protons
- Exactly zero pions

AND

Event Selection

- Event is not a "Clear Cosmic" and has a vertex in the FV
- A reconstructed muon candidate, defined the same as other analyses
- At least two reconstructed proton candidates, *defined more loosely for improved efficiency in low proton momentum*
 - Recommentum between 350 MeV/c and 2GeV/c
 - Proton χ^2 PID score < 50, no cut on muon χ^2 PID
 - No cut on Pandora track score
- No other primary tracks or shower exceeding 15cm or the leading proton length

8

AND

Selection Performance

- Shown as a function on sub-leading proton momentum
- Data points are 10% of Run1+Run2 (sampled from the same 15% shown by Jaesung), MC is scaled to match exposure
 - Note that we don't expect perfect agreement, the models are wrong!
- Error bands are the complete set of flux, GENIE, GEANT4, and detector uncertainties
- 71% signal purity, 44% 2p and 27% >2p

ICARUS

Low Level Observables

- Data-MC agreement looks as good as can be expected
 - GENIE's "model" for the sub-leading proton momentum, is at best arbitrary
- No obvious POT accounting issues or other red flags

High Level Observables

Transverse Kinematic Imbalance variables defined out of the muon and the leading two protons

Limited resolution due to MCS muon momentum!

Control Samples

- The leading background contributor is CC<2p events, mostly selected due to post-FSI strong interactions in the argon knocking out additional protons
- Followed by CC>1pNπ events, where a pion was missed in the event
- Both can be constrained with pion sidebands, with $v_{\mu}CC1pN\pi$ and $v_{\mu}CC>1pN\pi$ selections respectively
- Selecting events events with an additional MIP-like track and sorting into one selection the other depending on the number of reconstructed protons

15

Uncertainty and Efficiency

- All systematics are currently shared with the Np analysis
 - Detector uncertainties were assessed independently for this sample as a cross-check and found to be consistent
- Dominant uncertainties on the prediction come from the signal modeling
- This largely cancels in the efficiency correction, not impacting the measurement

MAGING

AND

 $\mathbf{K}_{\mathbf{k}}$

Uncertainty and Efficiency

- All systematics are currently shared with the Np analysis
 - Detector uncertainties were assessed independently for this sample as a cross-check and found to be consistent
- Dominant uncertainties on the prediction come from the signal modeling
- This largely cancels in the efficiency correction, not impacting the measurement —detector systematics do not!

Conclusions and Next Steps

- Selections and systematic assessments for the NuMI multi-proton measurement are in a very mature state
- 10% data looks promising, agreement with MC is as good as can be expected and no red flags were found
- Analysis proposal document has been reviewed by the committee, and a technical note is being drafted
 - Aiming to complete the tech note and request sideband unblinding *this fall!*

Stay tuned!

Backup

ICARUS

Jack Smedley

- All defined with respect to the muon and the leading two protons
- δpT Single-transverse momentum imbalance, sum of momentum transverse to neutrino direction
- δαT Transverse boosting angle, indicated if FSI is boosting with or against lepton direction
- δφT Transverse opening angle, measured between the muon and the hadronic system
- δpTT Double-transverse momentum imbalance, sum of momentum transverse to neutrino direction *and* muon direction

MAGING

 A_{ND}

KX

Momentum Residuals

AND

Assessing the Impact of MCS

- < 30% of the selected events have a contained muon
- We can test the impact of muon momentum mis-estimation on observables by cheating muon truth information into the reconstructed variables

Assessing the Impact of MCS

- < 30% of the selected events have a contained muon</p>
- We can test the impact of muon momentum mis-estimation on observables by cheating muon truth information into the reconstructed variables

Selection Variables

Selection Variables

AND

Selection Variables

26

Detector Variation Studies

- I generated many GENIE events and filtered for Np (Bruce+Jaesung's signal) and/or multi-proton events (my signal) to be used as common inputs to detector variation samples for both analyses
 - ~50k multi-proton events and >100k Np events
- I've evaluated the impact of several different detector effects on the multi-proton selection, consistent with what was done for Gray's di-muon search and earlier detector systematics studies for the Np XS
- Some of these variations are known to be overly conservative!
 - Some variations still need to be checked for this analysis, including the effect of the light level on trigger efficiency
- For reference the general process, icaruscode version, and fcls used are all documented in these notes (docdb 37753)

27

Detector Variation Studies

- No surprises, no obvious shape effects, and importantly no observed differences from the findings of the very similar Np analysis!
 - If this holds true for the remaining detector effects, then these analyses will share a common set of detector systematics

Detector Variation Studies

- No surprises, no obvious shape effects, and importantly no observed differences from the findings of the very similar Np analysis!
 - If this holds true for the remaining detector effects, then these analyses will share a common set of detector systematics

