NuMI @ ICARUS Flux PPFX/G4.10.4 Studies Cont.

Daniel Cherdack & Tony Wood

ICARUS Collaboration Meeting Fermilab October 14-16, 2024

Changes to the NuMI Flux Simulation

- Updated geometry with DuRex (concrete coated steel) blocks included.
- Updated version of GEANT4: $4.9.2 \rightarrow 4.10.4$
- Bug fix for missing uncertainties for hadron interactions with negative x_{r} .
- New nominal flux files with higher statistics ready for use in production.
 - Waiting on NOvA to merge in the 1MW geometry change. Will provide Reweights.
- Analysis package with PPFX weights and hadron prod. uncertainties are done.
- Focusing systematics are being vastly improved via high stat file generation.

New NuMI Flux Productions (Geant4-10.4)

2B POT – 700kW target geometry, missing g3Chase shielding blocks

Fatima and Karim produced another 1B (or 3B?) POT with shield blocks included

FHC: /pnfs/icarus/persistent/users/faabdalr/numi_beamsim/run0/

RHC: /pnfs/icarus/persistent/users/hassinin/numi_beamsim/run0/

250M POT production from Nitish Nayak which includes decay-at-rest particles

/pnfs/icarus/persistent/users/awood/g4numi_g4_10_4_p02d_nothresh/me000z{,-}200i/run0/files

Missing NuMI geometry components

v parent decay positions

Concrete-encased steel shielding blocks omitted from NuMI simulation for O(10 yrs) Reduces chase ceiling height by ~60 cm

Flux attenuation from extra material

Comparison of flux with and without G4 update

- LE consistent with uncertainties
- ~20% normalization inc.
 between 1 3.5 GeV
 region not covered by
 uncertainties
- K⁺ production rates appear to be increased with changes to nuclear model

However, the pion distributions are much more similar between FHC nu vs. RHC nubar

Angular distribution of pion decays (FHC vs RHC)

However, the pion distributions are much more similar between FHC nu vs. RHC nubar

Angular distribution of kaon decays

- In all 3 cases, majority of nu come from kaons directed along beam axis with wide decay kinematics
- Extra material added by g3Chase eats the flux from parent K directed toward ICARUS
- G4 update gives us slightly more nus

Angular distribution of kaon decays (FHC vs RHC)

Nuclear model changes affect K⁺/K⁻ production asymmetrically

PPFX Corrections Before and After GEANT4 Changes - FHC

- PPFX Still prefers to weight the flux down form the nominal prediction
- Post correction fluxes should be very close in data regions
- Tune has impact on non-data regions
- New model tuned to similar/same data so new correction is reduced

First Pass HP Uncertainties After PPFX Bug Fix:

PPFX Phase Space Coverage

- Data from NA49
- p+C interactions
- x_F-scaling in energy
- A-scaling for p+A (A≠C)
- No data for $p_i < 12 \text{ GeV},$ $p_T > 2 \text{ GeV},$ $x_F < 0 \text{ (any A)}$

Merging the bugfix re-introduced nucleon (quasi-)elastic scatters

"In PS" \rightarrow PPFX weights to data "A" \rightarrow Non-C / outside of target region

- Forward-going nucleons not covered by exp. HP data
- ~45% of all nucleon interactions
 - 36% in previous Geant version
- Each instance receives the 40% uncertainty on xsec
- Elected to exclude these
 - Negligible impact on primary hadron production
 - See <u>Tech Note (Sec 2.4.2)</u>

HP Uncertainties Neglecting Elastics

HP Correlation Matrix and Integrated Uncertainties Updated Tech Note

N+A systematic has large contribution from interactions with xF < 0

N+A systematic is driven by interactions with xF < 0

Effect of "mirroring" xF

Looking for More HP Data

After a quick chat with Leo and Vittorio

- Identified some overlap of this PS with the 2023 NA61 data release (120 GeV)
- Implementing it in PPFX would require:
 - Generate model predictions for xsecs in terms of p-theta
 - Only applicable to protons at/near 120 GeV
- Short-term approach → override the 40% conservative uncert estimate with a number based on the NA61 data/MC differences and data uncertainties

Conclusion

- We can re-sim the flux with high stats relatively quickly.
 - 2B POT FHC+RHC = 8k jobs at ~3.5 hours average per job.
 - Issues related to disk space persist, but we can work around this using tape storage.
- Slightly-out-of-phase nucleon interactions (- X_F) now have the largest contribution to the HP uncertainty at higher energies (e.g. above 1 GeV for FHC v_{μ}).
- New NA61 data potentially covers these interactions.
 - Working on a plan to implement that data and improve N+A treatment in the interim.
- Authoring an addendum to the Flux TN, which describes the impacts of the geometry and model changes. First draft completed.
- Fatima and Karim are working on updated beam focusing systematics using new, high stats flux simulation. Timeline for completion is order weeks.

Backup

Changes to the hadron interaction model

- G4NuMI updated to a more recent Geant4 version
 - Incorporates available HP data as constraints on the fit of the FTF nuclear model
 - Not the same as reweighting performed by PPFX—improved model-data agreement
 - Allows for changes on the model outside of regions where there's data coverage
 - See talk by <u>I. Safa (MicroBooNE)</u>
- NuMI MC produced with this version are incompatible with current PPFX version
- There is an ongoing effort, particularly by N. Nayak (MicroBooNE), to reconcile these changes with PPFX. (Meeting *tomorrow*!)
- Once that integration is complete, can push toward a reevaluation of the HP systematics with the updated HP model.

Comparison of flux with and without G4 update

- PPFX pulls kaon peak downward, but the G4 update increases the p+C→K+A rate
- Actively studying the source of discrepancy
- i.e., overlap between datasets included in PPFX vs. G4 update

Nu Energy vs. Parent Angle Ratios

- Parents directed >1° off-axis is impacted by the extra material
- Large fraction of our flux, esp. HE, come from decays directed toward ICARUS

Nu Energy vs. Parent Angle Ratios

- Parents directed >1° off-axis is impacted by the extra material
- Large fraction of our flux, esp. HE, come from decays directed toward ICARUS
- G4 update gives us back more
 K→nu decays broadly across the angular range, esp. up to 3-4 GeV.

3

 E_{ν} [GeV]

Flux Ratio Slide 14

G4-10.4 / G4-9.2p03

2

1.5r

0.5[∟]0

Ratio

Number of interactions with new hadron interaction model

Intermediate decays,

Number of interactions with new hadron interaction model (RHC)

Apparent convention change (or bug?) in the new G4NuMI version...

- Updating G4 apparently shifted the particle associations
 - **Before**: incident + target
 - **Now**: incident + parent's target
 - And new code to distinguish decays from the initial proton
- Confirmed with R. Hatcher that this was unknown/unexpected
- Possible implications for PPFX, which reads the interaction chain

Next steps

- Unearthed geometry and model changes has prompted an immediate reevaluation of the NuMI flux for ICARUS
- Galvanized interest from multiple experiments to work toward a modernization of the high-stats NuMI flux production
 - Validation of the NuMI geometry and other aspects of the simulation
 - Reassess the suite of beam focusing systematics
- Initial PPFX updates integrating new Geant4 version are available, so I will be testing in the very near term
- Addendum and 2nd note in the near future

Backup

Angular distribution of parent particle momentum at decay pt

Parent Angle – K^{\pm} → electron (anti-)neutrino

Parent Angle – $K_L^0 \rightarrow$ electron neutrino

Parent Angle – $\mu^{\pm} \rightarrow$ electron (anti-)neutrino

PPFX Corrections Before and After GEANT4 Changes - FHC

PPFX Corrections Before and After GEANT4 Changes - RHC

Smaller effect on the pi \rightarrow nu moving to updated G4

