

ICARUS optical reconstruction: status and perspectives

ICARUS Collaboration Meeting

Fermilab, October 14th 2024

Alessandro Menegolli - University and INFN Pavia (Italy)

Gianluca Petrillo - SLAC National Laboratory (USA)

on behalf the ICARUS Optical Reconstruction WG

Thanks Magda, Matteo and Vanessa for their excellent work and for providing slides!

The way we were in April CM

• A lot of work still needs to be done. Some highlights:

Run2:

- investigation of scintillation simulation
- investigation of light propagation
- ultimately, fix to light simulation

From G. Petrillo's outlook

- Run3:
 - finalisation of PMT synchronisation
 - tuning of reconstruction
 - integration of the new PMT response into simulation
 - assessment of trigger efficiency and charge/light matching in simulation
 - in general: understand how to best exploit the interaction timing tool

The way we were in April CM

- A lot of work still needs to be done. Some highlights:
- Run2:
 - investigation of scintillation simulation (M. Cicerchia, V. Brio, C. Petta)
 - investigation of light propagation
 - ultimately, fix to light simulation

From G. Petrillo's outlook

- Run3:
 - finalisation of PMT synchronisation (M. Vicenzi)
 - tuning of reconstruction
 - integration of the new PMT response into simulation (M. Vicenzi)
 - assessment of trigger efficiency and charge/light matching in simulation
 - in general: understand how to best exploit the interaction timing tool (M. Diwan, M. Vicenzi)
 - RUN2-RUN3 comparison (M. Cicerchia, V. Brio, C. Petta)

Study of light signal: RUN3 vs. RUN2

- First studies of light signals (amplitude and light yields) of **RUN3** (runs: 11816 + 11813) and its **comparison with RUN2** (run: 9435) by Magda Cicerchia.
- Main results:
 - Similar amplitude (as expected)
 - RUN3 is almost half of RUN2 in light yields' variables (integral, number of ph.e., ...)
- More info in: DocDB: <u>36185-v1</u>, <u>36368-v1</u>, <u>36960-v1</u>

Study of light signal: RUN3 vs. RUN2

- First studies of light signals (amplitude and light yields) of **RUN3** (runs: 11816 + 11813) and its comparison with RUN2 (run: 9435) by Magda Cicerchia.
- Main results:
 - Similar amplitude (as expected)
 - RUN3 is almost half of RUN2 in light yields' variables (integral, number of ph.e., ...)
- More info in: DocDB: <u>36185-v1</u>, <u>36368-v1</u>, <u>36960-v1</u>

Selection of the tracks: cathode crossing vertical tracks with a $|t_0| < 350 \mu s$ $y_{start} > 125 y_{stop} < -175$; 20 < $|z_{start} - z_{end}| < 130 \text{ cm}$; 20 < $|x_{start} - x_{end}| < 130 \text{ cm}|z$ -barycenter of tracks | < 500 cm

Selections of flashes (OptFlash) in coincidence with tracks:

barycenter $\Delta z < 50$ cm & in time $\Delta t = |t_0 - t_{flash}| = [2, 8]$ (RUN2) and = [-3, 3] (RUN3) \rightarrow |z-barycenter of flash| < 500 cm.

Selections of the *brightest signals* (OptHits with highest amplitude) in coincidence with tracks: only the first flash associated to the track is considered and the first OptHit for each channel is recognized in each TPC side:

- The 10 ophits with the highest amplitude are selected;
- The 10 ophits with the highest integral are selected;

In addition, for each selected track, the sum of the integrals of all the OpHits in all the flashes associated to the track is calculated.

Light signal study for *brightest signals* RUN2 (9435) vs. RUN3 (11813+11816) – amplitude and integral

Courtesy M. Cicerchia

DocDB: <u>36368-v1</u>

Light signal study for *cathode crossing tracks* RUN2 (9435) vs. RUN3 (11813+11816) – number of ph.e.

a |t₀|< 300µs

longer than 50 cm

→ |z-barycenter of tracks| < 500 cm

Selections of flashes (OptFlash) in coincidence with tracks:

in barycenter Δz < 30cm & in time Δt = $|t_0 - t_{flash}|$ = [2 , 8] (RUN2) and = [-3, 3] (RUN3)

→ |z-barycenter of flash| < 500 cm.

Courtesy M. Cicerchia

DocDB: 36960-v1

Light signal study for *single OpHits RUN2 (9435) vs. RUN3 (11813+11816) – amplitude*

Selection of the tracks: cathode crossing tracks with

a $|t_0| < 300 \mu s$ longer than 50 cm

→ |z-barycenter of tracks| < 500 cm

Selections of flashes (OptFlash) in coincidence with tracks:

in barycenter
$$\Delta z < 30$$
cm & in time $\Delta t = |t_0 - t_{flash}| = [2, 8]$ (RUN2) and = [-3, 3] (RUN3)

→ |z-barycenter of flash| < 500 cm.

Selections of the *single Ophits*:

there are no other optcal hits in the previous 15 us

0.04 137173 Entries Mean 33.06 Std Dev 17.95 0.03 - RUN2 0.02 - RUN3 0.01 50 100 150amplitude (#ADC)

Similar peak values for the amplitude, but different shapes

Courtesy M. Cicerchia

Study of light signal: PMT waveforms

- Updated studies of the PMT waveform shape in **RUN2** (run: 9435) by Vanessa Brio and Catia Petta.
- Main results:
 - Good understanding of RUN2 Monte Carlo. Better understanding of RUN2 data w.r.t. April Collaboration Meeting.
 - Extraction of the time constants for scintillation in LAr from data.
- RUN2 sample: same selection used by Magda as previously shown to extract the average PMT waveform from data and Monte Carlo.

Study of light signal: PMT waveforms

- New studies of the PMT waveform shape in **RUN2** (run: 9435) by Vanessa Brio and Catia Petta.
- Main results:
 - Good understanding of RUN2 Monte Carlo. Better understanding of RUN2 data w.r.t. April Collaboration Meeting.
 - Extraction of the time constants for scintillation in LAr from data.
- RUN2 sample: same selection used by Magda as previously shown to extract the average PMT waveform from data and Monte Carlo.

- → Selection of the 12 brightest PMTs for each flash;
- → Alignment of all waveforms at t0=0;
- → Normalization of the aligned waveforms;
- → Study/fit of the average waveform;
- → Comparison Data MC.

Courtesy V. Brio

PMT waveforms: RUN2 data

Old fit function:

New fit function:

- New fit: tau fast closer to the expected value of 6 ns. Slow/fast ratio closer to 3.
- Tau slow smaller than 1.6 us though. Intermediate component small, but present.

PMT waveforms: RUN2 Monte Carlo

503.5

302.2

0.103

Old fit function:

$$f(t) = \sum_{j=f,i,s} \frac{A_j}{2\tau_j} \exp\left[\frac{1}{2} \left(\frac{\sigma}{\tau_j}\right)^2 - \left(\frac{t-t_m}{\tau_j}\right)\right] \left[1 - \operatorname{erf}\left(\frac{1}{\sqrt{2}} \left(\frac{\sigma}{\tau_j} - \frac{(t-t_m)}{\sigma}\right)\right)\right].$$

Waveform Profile

profile Amplitude Entries 1.4976e+08 Mean Mean y 0.08233 Std Dev Std Dev y 10 10 10-**Courtesy V. Brio** 0 200 400 600 800 1000 Time (Ticks)

T Fast [ns]	T Interm [ns]	T Slow[ns]	% Fast	% Slow+ Interm
28 ± 0.2	979 ± 22	1592 ± 0.3	15%	85%

fit function convoluted Old with RUN2 Single Photoelectron Response (SPR)

New fit function:

- New fit: MC tau fast improved, but still larger than data. Slow/fast ratio closer to 3.
- Tau slow ~ 1.6 us as expected and no interm. component: this is consistent since we do not simulate it! 12

Data-driven SPR for Run-1,2,3

- The SPR function is extracted from data by averaging ~4k laser pulses and then rescaling its amplitude to the single-PE level, also extracted from data. Laser pulses are <100 ps long, so the assumption is that all ph.e. are stacked on top of each other and linearity holds (shape can be rescaled).
 - Run-1,2 MC uses SPR from channel 258 taken with the scope (1ns sampling).
- Given the new cables, the **Run-3 SPR was extracted from digitized laser data**. Similarly, older laser runs were compared to the MC SPR to check for the possible source of MC vs data discrepancy.

SBN-docdb-35672

Courtesy M. Vicenzi

SPR vs single Ph.e. OpHit

- The single Ph.e. level is determined using small and isolated (1us) OpHits in minbias data.
- The distribution of amplitude and integral are fitted to find the **single Ph.e. amplitude** and the **gain** (=charge collected from a single Ph.e.)
- Discrepancy found comparing the **expected scaling between peak amplitude and area** from the SPR and the actual OpHit distribution in all Run-1,2,3.
 - Setting the SPR to the same OpHit amplitude in data (~3.5 mV) does not yield the same area/gain.
- The source of the disagreement is being investigated as well as its effects on Data vs MC comparison.
 - SPR is integrated between 0-800ns, while OpHits have dynamic integration windows.

SBN-docdb-35672

Event timing with light only

- Precise event timing allows to tag neutrinos directly by exploiting the known time profile of the beam(s). This builds upon our three-stage timing calibrations that bring the synchronization to O(300-500ps).
- Time and position of the scintillation events is reconstructed only with PMT data and synchronized with the beam timing. This procedure has allowed to reconstruct the full ns-level time profile of both BNB and NuMI beams with only light information.
 - The dependency on the (x,y) position is removed by taking the mean between the first PMT times on opposite walls of the module.
 - A **time-of-flight** (ToF) correction is applied using the barycenter of the flash of light.

SBN-docdb-36948

Beam structure

Beam timing as selection tool

- Beam structure: powerful tool for either neutrino selection (rejecting cosmic background) or neutrino rejection (BSM searches).
- Fully unbiased neutrino sample by looking at minimum bias data, being independent from reconstruction software trained on MC.
- Next: improve bunch resolution. The structure currently shows the expected spacing, but a larger bunch width (~ 3 ns) due to bias in the light-only determination of the ToF correction using the flash barycenter caused by different topologies + relative timing shifts from run to run over time (see <u>SBN-docdb-36341</u>).
- The first integration of this additional timing information into the reconstruction framework (calb_ntuples) has been completed with <u>PR#751</u>. Work in progress to add it into the CAF for event selection in a proper analysis flow.

Summary and perspectives

- Many of the recent activities within OpReco WG have been carried out to improve our understanding of PMT light signal in ICARUS through Data/MC comparison and RUN2/RUN3 comparison.
- Also timing is at a very good stage and it may be used now for event selection and cosmic background rejection profiting of the exploitation of the BNB/NuMI beam structures.

Summary and perspectives

- Many of the recent activities within OpReco WG have been carried out to improve our understanding of PMT light signal in ICARUS through Data/MC comparison and RUN2/RUN3 comparison.
- Also timing is at a very good stage and it may be used now for event selection and cosmic background rejection profiting of the exploitation of the BNB/NuMI beam structures.
- What next? Studies are already ongoing to get an energy calibration using ICARUS PMT light signals.

Summary and perspectives

- Many of the recent activities within OpReco WG have been carried out to improve our understanding of PMT light signal in ICARUS through Data/MC comparison and RUN2/RUN3 comparison.
- Also timing is at a very good stage and it may be used now for event selection and cosmic background rejection profiting of the exploitation of the BNB/NuMI beam structures.
- What next? Studies are already ongoing to get an energy calibration using ICARUS PMT light signals.
- Eventually: shall we use ICARUS as a self-compensating light calorimeter at the o(GeV) neutrino energy to be used in synergy with the LAr-TPC charge calorimetry? See for example the recent (last week!) <u>arXiv:2410.04603</u>

Thank you for your attention

The OpReco Working Group (apologies to whom I forgot to list!):

M. Betancourt, V. Brio, M. Cicerchia, S. Copello, M. Diwan, C. Farnese, A. Heggestuen, A. Menegolli, M. Mooney, V. Paolone, G. Petrillo, C. Petta, F. Poppi, S. Saha, S. Seo, J. Smedley, R. Triozzi, M. Vicenzi, J. Zettlemoyer

... and please more people are welcome!

Reports on the work in progress happen on <u>Mondays</u>, <u>11:00 am (FNAL time)</u>. Quick communications occur via Slack channel <u>#icarus-light-analysis</u>.