Cross section model + uncertainties for ICARUS oscillation analysis and thoughts on SBN

Chris Marshall University of Rochester 14 October, 2024

Outline

- Definitions: base model, central value, systematic uncertainties, fake data studies
- What is the ICARUS base model? Why?
- Should we tune the CV?
- Are our current systematics adequate?
- Differences between ICARUS only and SBND+ICARUS
- Conclusions & recommendations

How cross sections enter OA

- Make predictions of neutrino energy distribution for selected 1μNp events in ICARUS, for different values of oscillation parameters (e.g. Δm^2 , $\theta_{\mu\nu}$)
- Compare prediction to data to infer oscillation selected v_u 1µNp parameters
- Cross section model affects event rate and shape as a function of E_v (or any other observable)

Definitions

- **Base model** = the out-of-the-box generator prediction
- **Central value** = we could decide to **reweight** the base model, for example by comparing it to data from another experiment
- **Uncertainties** = free parameters of the model are varied to produce alternate predictions, which form an error band

The base model: "AR23"

- New GENIE "tune" called AR23 developed by DUNE NIUWG
- Philosophy: maximize reweightability to make model flexible

- Updated ground state model (pictured)
- Valencia 1p1h with Z-expansion, SuSav2 2p2h, Berger-Seghal RES and COH, hA2018 FSI
- DUNE has also developed uncertainty "dials" that extend GENIE ReWeight, can be trivially used in ICARUS

Tuning the CV

- It is possible to further tune the CV to external data
- MicroBooNE tuned its G18-based model to T2K 2016 CC0π data as a function of lepton kinematics
- This could make the model better describe data

An argument *for* **tuning**

- In the ICARUS-only analysis, if the XS model is wrong, we could attribute this to oscillations
- Tuning to external data is the best way to get the best model prediction

An argument *against* **tuning**

- ICARUS will search for oscillations in the L/E range of \sim 0.3-3 km/GeV
- All modern neutrino-nucleus cross section measurements are made using short-baseline detectors in O(1 GeV) beams
- T2K is 0.2-2 GeV at $280m \rightarrow L/E$ 0.15-1.4
- MINERvA (LE) is 1.5-4 GeV at \sim 1km \rightarrow L/E 0.25-0.7
- If there is v_{μ} disappearance that ICARUS would see, it will be present in the cross section data

Example: 10% ν^μ disappearance

- Suppose there is a 10% disappearance to steriles at all energies, for example $\sin^2 2\theta \sim 0.1$ and $\Delta m^2 = 100$ eV²
- Flux-integrated cross sections will divide by a flux that is 10% too large, so XS results will be 10% too small
- ICARUS tunes to those results, decreases the XS prediction by 10%
- ICARUS observes no disappearance, because we decreased the cross section by 10% so our tuned MC + no oscillations is in perfect agreement with the data

Summary: we should *not* **tune**

- There is no way to tune without potentially biasing the oscillation analysis against oscillations
- We should ensure that our model and its uncertainties are sufficiently robust that it can describe external data
- We should test our model using dedicated fake data samples to ensure that our cross section uncertainties cover discrepancies, and they are not attributed to oscillations

• This section of the talk describes work done by Jeanie Wolfs

- Step 1: identify model parameters that actually matter
- The model has dozens of free parameters, many of which only affect high-W processes that do not occur often in BNB
- For AR23 model: four zexpansion parameters (1p1h), RPA, and 2p2h normalization

- Use NUISANCE to tune a model to one data set, and then compare it to another
- We used four measurements:
	- Τ2Κ 2016 CC0π (Τ_μ, θ_μ)
	- Τ2Κ 2020 CC0π (Τ_μ, θ_μ)
	- \cdot μBooNE 1μ1p p_u
	- \cdot μBooNE 1μ1p p_p
- If the model is correct, we should get a good fit without tuning parameters
- If the model uncertainties are adequate, we should get a good fit, potentially with different best-fit parameter values
- If we get a poor fit, the model does not have adequate freedom to describe the data

AR23 vs. G18 vs. "diagonal"

14 Chris Marshall - cross sections for OA

Discussion

- μBooNE's tune used G18 as the base model, and tuned to T2K 2016 data (Phys. Rev. D 105, 072001 (2022))
- They found a poor fit quality fit decreases total XS despite data being above the prediction
- The "solution" was to use a "diagonal" covariance matrix, essentially ignoring the (real) correlations in T2K's systematics \rightarrow resulted in a better fit, better agreement with μBooNE data
- But applying this same method and tuning to μBooNE's own data gives absurd result \rightarrow the method is not robust, it just happened to work in this one case

Comparing to newer T2K data

- Comparison to T2K 2020 data: AR23 model is reasonably describing all but the T2K 2016 data
- This is odd; there is a high overlap between T2K's two data samples

Comparing to newer T2K data

• Same thing but using G18 tune, with M_AQE instead of z-expansion

• Using the "diagonal covariance" of MicroBooNE you get silly results when tuning on MicroBooNE data

Full AR23 χ^2 /dof

- A robust model would be all blue \rightarrow can tune with one dataset and describe another with small χ^2
- There is a clear issue with T2K 2016 (it is inconsistent with every other data set, including T2K 2020) but otherwise, AR23 is doing OK with lepton kinematics

Summary (G18) Full G18 χ^2 /dof

• G18 also does reasonably well, but AR23 is more flexible in simultaneously fitting T2K and μBooNE

Parameter pulls

- We can see what the best-fit values and post-fit uncertainties are for fits to different data sets
- We don't expect much constraint on the prior 1σ uncertainties
- Except for T2K2016, pulls are all <1σ, but some differences between T2K2020 and μBooNE
	- This means that the same model is not simultaneously describing T2K and μBooNE, but there is enough flexibility in the uncertainties to describe both of them

Parameter pulls (G18)

- The G18 model with full covariance also reasonably describes T2K2020 and μBooNE
- Note parameters are different, and some parameters get unrealistically well constrained
- The diagonal fits are all over the place

μBooNE proton kinematics

μBooNE proton kinematics

Proton kinematics matter for ICARUS

- Since we are planning to use an exclusive $1\mu Np(N>0)$ selection for the OA, the modeling of proton kinematics is important
- In particular, the selection efficiency is a strong function of the (uncertain) proton energy distribution
- We may need additional uncertainties in this space

Fake data studies for protons

- Can use generator comparisons to generate out-of-model fake data samples
- For example, we can reweight our prediction to another generator vs. p_p and maybe also θ_p
- Idea would be to run oscillation fits on the fake data
- If our existing uncertainties cover this, we should get best-fit oscillations of zero; if we see fake oscillations, we may need additional systematics

Summary: are our systemtaics adequate?

- Current systematics are reasonably describing lepton kinematics in T2K and μBooNE, including shape
	- Six parameters in AR23 are especially important
- Some indication of deficiencies in proton kinematics
	- Some new dials developed by DUNE may help \rightarrow we plan to include these once we respin CAFs
	- Mock data studies motivated by alternate generators as a test of the impact of varied proton kinematics on oscillation fit

What is different with SBND?

- When we include SBND, the argument against tuning the CV becomes stronger
	- We will effectively tune the model with SBND data, correctly accounting for short-baseline oscillations
- It is likely that second-order cross section effects will become more important
	- Differences in efficiency for SBND and ICARUS
	- Differences between v_μ and v_e cross sections
	- Subtle energy dependence effects
	- etc.

Conclusions & recommendations:

- We should continue to use AR23
- We should **not** tune it to external data
- We should always ensure that the model is robust, flexible enough to describe multiple external datasets, fake data, etc.
	- This is in OK shape, lepton kinematics look OK
- We should pursue fake data studies, especially varying proton kinematics to test the robustness of our OA
- The argument against tuning becomes stronger with SBND, but cross section uncertainties will need some revisiting

