

BNB Flux Simulation Status Leo Aliaga and Megan Pounds (leonidas.aliagasoplin@uta.edu) University of Texas at Arlington October 15, 2024

ICARUS Collaboration Meeting Fermilab, October 14-16 2024

Introduction

Plan for this talk:

Overview of current flux prediction and systematic uncertainty calculation

 Emphasis on areas for improvement in flux simulation and reassessment of systematics, in light of ongoing efforts of a new flux simulation and uncertainties

See Raquel's detailed update on the new flux simulation tomorrow

2

Leo Aliaga

BNB Flux Simulation Status

- constraint from SciBooNE.

SBN Simulation Infrastructure

Current flux simulation comes from MiniBooNE

- Baseline MC is Geant 4-08-01-patch-02
- Incorporates parametrized hadronic cross-sections (BooNE cross section model based on data) MiniBooNE ntuples files are used to fill GSimple ntuples.

GSimple has limited information, mostly neutrino parent kinematics

- Serves as input for the GENIE simulation
- Information is copied in MCFlux and stored in our standard ART files

Uncertainty calculators live in sbncode/SBNEventWeight (SBNSoftware)

- Calculators generates weights to account for systematic shifts
- Uses MCFlux as input to get the neutrino type and parent kinematic
- Calculators use input from pre-calculated cross sections, ratios, covariance matrix from MiniBooNE

BNB Flux Simulation Status

BNB Flux Uncertainty Calculators

There are 3 types of uncertainties implemented in SBNEventWeight:

1. Focusing uncertainties

Unisims: pre-calculated 2 or 3 universes to generate weights: overall systematic assuming they are a Gaussian distributed

2. Beam attenuation

Unisims based on integrated cross sections: pre-calculated +- 1σ variations

$$\sigma_{total} = \sigma_{elastic} + \underbrace{\sigma_{inelastic} + \sigma_{quasi-elastic}}_{\sigma_{absorption}}$$

Leo Aliaga

BNB Flux Simulation Status

Calculators:

Horn current magnitude (pre-calculated +-1σ variations)

"Skin effect" on the horn conductor (spread between models)

- $\gg \pi$ total and π quasi-elastic
- Nucleon total, inelastic and quasi-elastic

BNB Flux Uncertainty Calculators

Hadron production 3.

Based on hadron production data (differential cross sections)

Uses Multi-Gausian smearing

Caveats:

6

Due to the limited information stored in GSimple files, some assumption were made:

- Only a single hadronic production is assumed

Leo Aliaga

BNB Flux Simulation Status

Calculators: Charged pions

Charged kaons (neutral kaons are disable)

• If the pion was generated by a secondary hadron, it is re-written as coming from the original proton with momentum (0,0,8 GeV).

Charged-Pion Uncertainty Calculator

Uses the calculator **PrimaryHadronSWCentralSplineVariation**.

- HARP double differential cross sections interpolated using splines on each universes generated as multivariate normal deviates
- Splines also used to extrapolate outside the HARP region
- The "weight" per universe for uncertainties as the ratio of the interpolated value from the spline (Sp) and the SW :

$$w^{i} = \frac{Sp^{i}(p,\theta)}{SW(p,\theta)}, i = universe$$

• Large discrepancies between spline prediction and SW outside the data coverage results in large uncertainties at low momentum

Caveat: HARP-Be in pi+ is every material (Be and non-Beryllium)

7 10-15-2024 Leo Aliaga

BNB Flux Simulation Status

Impact of HARP Extrapolation

Large asymmetry outside the data coverage results in large uncertainties at low momentum

Leo Aliaga

BNB Flux Simulation Status

Impact of HARP Extrapolation at Low momentum

Large asymmetry outside the data coverage results in large uncertainties at low momentum

9 10-15-2024

Leo Aliaga

BNB Flux Simulation Status

Impact of HARP Extrapolation at Large Angles

Caveat: the calculator assigns 195 mrad angle for pi+ (out of HARP coverage). The reason is to control the spline variations.

10 *10-15-2024 Leo Aliaga*

BNB Flux Simulation Status

Fractional Uncertainties

Uncertainties are calculated using the flux systematic universes directly from the true information and no selection is applied

Method: Standard deviation of with a biased reference (flux central value)

10-15-2024

Leo Aliaga

BNB Flux Simulation Status

Total Fractional Uncertainties

Leo Aliaga

Comparison with MicroBooNE

ICARUS at around 0.8 GeV (peak): ~6%. MicroBooNE at around 0.8 GeV: ~7.5%

Leo Aliaga

BNB Flux Simulation Status

Summary

- I presented an overview of the current flux prediction methods and systematic uncertainty calculations, with a particular focus on beamline pion production
- Areas for improvement in both flux simulation precision and uncertainty assessments have been identified. Addressing these gaps is crucial for enhancing the overall accuracy of our predictions.
- The ongoing efforts to finalize a new flux prediction, including the validation process and reassessment of uncertainties, will have a large positive impact
 - There is a current work on validation and reassess uncertainties
 - With new hadron production data from EMPHATIC at Fermilab and NA61/SHINE at CERN, we expect to improve phase space coverage and further reduce uncertainties

14

See Raquel's detailed update on the new flux simulation tomorrow

Backup

10-15-2024

Leo Aliaga

BNB Flux Simulation Status

Impact of HARP Extrapolation at Low momentum

10-15-2024

Leo Aliaga

BNB Flux Simulation Status

