$\nu_{\rm e}$ Selections with SPINE for BNB and NuMI

Dan Carber, October 16th, 2024

Overview of Workflow

- Generator: prodcorsika_genie_protononly_icarus_numi{_nue}.fcl, prodcorsika_bnb{_nue}_genie_protononly_icarus.fcl
- Filter: filter_genie_active_icarus.fcl (Only on BNB)
- G4: larg4_icarus_cosmics_sce_2d_drift.fcl
- Detsim: detsim_2d_icarus_fitFR_refactored.fcl
- Stage 0: stage0_run2_icarus_mc_refactored.fcl
- Stage 1: stage1_run2_1d_larcv_icarus_MC.fcl
- Cafmaker: cafmakerjob_icarus_detsim2d.fcl

Scalable Particle Imaging with Neural Embeddings (SPINE)

NuMI v_e Event

BNB ν_e Selection Dae Heun Koh

Sample and Data Processing

MC samples

- BNB ν + out of time cosmics (~300,000 events)
 - Icaruscode version v09_84_00_01
- BNB v_e + out of time cosmics (~100,000 events)
 - (Icaruscode version v09_89_01_01)
- Actively making MC samples to study systematics

Run 2 Data (Icaruscode version v09_84_00_01)

- BNB Offbeam Majority
 - LArCV files have been transferred to SLAC
 - Processed for Justin Mueller's Analysis
- BNB Onbeam Majority (~1.92E20 POT)
 - LArCV files have been transferred to SLAC
 - Processed for Justin Mueller's Analysis

BNB ν_e Selection

- Containment
 - Require depositions to be within the TPC that it was collected only for tracks
 - 5 cm margin on TPC borders
 - -5 cm margin on the cathode
- Fiducial volume: 25 cm from X and Y detector boundaries, 30 cm from beam-side and 50 cm from downstream edge in Z (same as used in Pandora-based selections)
- Signal Definition:
 - 1 primary electron with energy greater than 100 MeV
 - N > 0 primary protons with energy greater than 40 MeV
 - Any other primary particle must be greater than 25 MeV
- Flash Matching:
 - Utilizing OpTOFinder to constrain flash match to be withing BNB beam window

BNB v_e Heuristic Selections

- Shower Conversion Distance: An electron primary shower must be within 2 cm from the vertex
- Multi-Shower Check:
 - All electron primary showers must not have two distinct shower fragments that are separated more than 41 degrees (threshold not fine-tuned)
- Track-Shower Merger:
 - Merge a track to a leading shower in a given interaction if it satisfies all of the following conditions:
 - Track is less than 50cm
 - (Reco) Track direction and (Reco) shower direction angular separation less than 10 degrees
 - Track start $\frac{dE}{dx}$ is less than 15 MeV / cm (to avoid merging colinear protons)
 - Track is within 1cm from leading shower
- Primary-Track Vertex Adjacency:
 - All track primaries must be within 3cm from vertex (if not, we override the primary labels and classify them as non-primaries)

BNB ν_e Selection

Cuts	Efficiency (%)	# Efficiency	Purity (%)	# Purity
True $ u_e$	100.00	487 / 487	0.0045	555 / 12234234
Containment (Tracks)	96.3	469 / 487	0.052	$537 \ / \ 1025739$
Fiducial	94.9	462 / 487	0.100	$512 \ / \ 514064$
Flash Time	92.4	450 / 487	0.374	$452 \ / \ 120799$
Final State	70.8	345 / 487	30.5	345 / 1131
Visible Final State	71.5	348 / 487	50.4	348 / 690
PID-Semantic Agreement	71.0	346 / 487	50.4	346 / 686
PID Score Thresholding	60.4	294 / 487	51.2	$294 \ / \ 574$
Shower Conversion Distance	52.4	$255 \ / \ 487$	63.4	$255 \ / \ 402$
Multi-Shower Check	49.7	$242 \ / \ 487$	75.4	242 / 321
Track-Shower Merger	53.8	262 / 487	75.9	262 / 345
Primary Track-Vertex Adjacency	55.2	$269 \ / \ 487$	73.7	$269 \ / \ 365$

TABLE 1. Effects of cuts for BNB ν + COSIKA sample (\approx 300k).

BNB ν_e Selection

Efficiency = 55.24% (269 / 497), Purity = 73.70% (269 / 365)

v_e Selection (with PID score thresholding)

Efficiency = 55.24% (269 / 497), Purity = 73.70% (269 / 365)

Selected 1eNp Interactions

NuMI ν_e Selection Dan Carber

Sample and Data Processing

MC samples

- NuMI ν + out of time cosmics (~300k events)
 - Samweb def:

icaruspro_production_v09_89_01_01p01_2024A_ICARUS_NuMI_MC_NuMI_MC_{caf,larcv}

- NuMI v_e + out of time cosmics (~100k events)
 - Samweb def:

icaruspro_production_v09_89_01_01p01_2024A_ICARUS_NuMI_nue_MC_NuMI_nue_MC_{ caf,larcv}

Run 2 Data

- NuMI Offbeam Majority
 - LArCV files have been transferred to SLAC
- NuMI Onbeam Majority (~2.4E20 POT)
 - LArCV files have been transferred to SLAC

Selection of 1eNp(N > 0)

Containment:

Require depositions to be within the TPC that it was collected only for tracks

- 5 cm margin on TPC borders
- -5 cm margin on the cathode

Signal Definition:

Selecting primary particles associated to interaction

- Electrons must be greater than 70 MeV
- Protons must be greater than 40 MeV
- All other particles > 25 MeV
- 1eNp: 1 primary electron and N>0 primary protons

Flash Matching:

Utilizing OpTOFinder to constrain flash match to be withing NuMI beam window 0-9.6 µseconds Conversion distance cut:

Requires closest point of primary shower to be < 2 cm from the vertex

Selection of 1eNp (N > 0)

	Signal: 1eNp (N > 0)					
Cuts	Efficiency %	# Efficiency	Purity %	# Purity		
Containment	94.4%	$\frac{12272}{12998}$.028%	2211 793717		
Flash Match	90.6%	$\frac{11779}{12998}$.98%	$\frac{1938}{201677}$		
Final State	60.3%	$\frac{7833}{12998}$	75.8%	$\frac{1224}{1614}$		
Conversion Distance	51.5%	$\frac{6691}{12998}$	81.4%	$\frac{1040}{1278}$		

Purity is done with NuMI ν + cosmics (~300k events), Efficiency is done with NuMI ν_e + cosmics (~100k events)

Energy Reconstruction of Showers

Reco Good Shower Energy Vs. True Shower Energy

Energy Spectrum of 1eNp Selection

Efficiency, Purity Vs. Energy

Overall Efficiency: 51.5%

Overall Purity: 81.4%

Efficiency drop at higher energies are due to the training sample energy ranges

Conclusion and Next Steps

BNB $\nu_{\rm e}$

- Utilizing shower $\frac{dE}{dx}$ to remove v_{μ} NC backgrounds
- Selections that have removed most background events
 - Most backgrounds are now due to signal definitions and events that resemble 1eNp events
- Planning for full description of MC systematics in the coming month
- BNB $\nu_{\rm e}$ selection demonstration paper by end of the calendar year
- Thesis defense by sometime during March or before

NuMI $\nu_{\rm e}$

- Identify sources of efficiency loss and apply fixes
 - Fix vertex reconstruction
 - Apply new trainings from samples with larger energy ranges
- Look into reducing NC pi0 background
 - Utilizing reconstructed pi0 mass peak
 - This will help with CC $v_{\rm e}$ Inclusive
- Data/Monte Carlo comparisons with 10% unblinded data from Run 2
- Plan for NuMI 1eNp cross-section result by summer of 2025

Back Up Slides

Multi-Shower Check

- 2. Normalize and map to unit sphere
- 3. Cluster points on unit sphere using DBSCAN and cosine distance.
- 4. Measure mean direction vector for each clusters

1. Compute displacement vectors from shower start to all points

Multi-Shower Check

5. Compute separation angle between mean vectors 6. If $\theta \ge \theta_{threshold}$, reject shower as candidate electron shower.

ICARUS ML Meeting

Multi-Shower Check

5. Compute separation angle between mean vectors 6. If $\theta \ge \theta_{threshold}$, reject shower as candidate electron shower.

Track-Shower Merger

ICARUS ML Meeting

- ν_μ NC: 12% (45 events)
 - 48% (22/45) due to 1gNp-like events (g is attached to vertex)
 - γ from π^0 decay either escaping detector volume entirely, or second shower barely visible
 - 31% (14/45) due to 2gNp-like events (one g attached, usually merged)
 - Mostly due to two-arm cut failures
 - 4/45 are (visually) detached 1gNp events, but passed shower-vertex adjacency due to small pixels near vertex
 - 4/45 Dalitz decay
 - 5/45 pid mistakes (p -> pi, and other)

Nue Selection (before shower containment removal + truth primary label fix)

- ν_e CC (non-signal): 10% (36 events)
 - 33% (12/36) due to low energy protons (1e -> 1e1p)
 - 42% (15/36) due to p -> pi pid mistakes
 - 5 / 36 true nonfiducial / true uncontained, but reconstructed as valid 1eNp
 - 3 / 36 proton inelastic GENIE non-primaries having particle startpoint just outside
 0.5cm true vertex true particle startpoint threshold.

Nue Selection

Nue Selection

Nue Selection (1g1p -> 1e1p)

ICARUS ML Meeting

Nue Selection (1g1p -> 1e1p)

ICARUS ML Meeting

1eNp Selection Background breakdown

Other v_e

- 55/100 1e1piNp
- 19/100 1e1pi
- 18/100 1e
- 3/100 1e2piNp
- 1/100 1g1e
- 1/100 1e2pi
- 1/100 1g1e2p
- 1/100 2g1e1pi
- 1/100 2g1e3p

u_{μ}

- 14/30 1muNp
- 7/30 2g1muNp
- 4/30 1mu1piNp
- 1/30 1mu
- 2/30 1g1m1piNp
- 1/30 2g1m1pi
- 1/30 1e1m7p

Efficiency and Failure Mode Breakdown

