

Mechanical & Materials Engineering – Fabrication technologies & Subcontracting Service

Jorge GUARDIA, Simon BARRIERE on behalf of the EN-MME Main Workshop

Thematic Industry Day-Precision Machining

https://indico.cern.ch/event/1447719/

Outline

- EN-MME group: mandate and structure
- The EN-MME Main Workshop
- Subcontracting activities

Outline

- EN-MME group: mandate and structure
- The EN-MME Main Workshop
- Subcontracting activities

CERN Organisation: Sectors, Departments and Units

Engineering Dept. Structure

• Operation

- Technical Infrastructures
- Accelerators Maintenance

- Projects
 - Consolidation
 - Upgrades
 - New facilities
 - Design & Manufacturing

Studies

Mechanical & Materials Engineering (EN-MME) Group Mandate:

The mandate of the MME group is to provide the CERN community with specific engineering solutions combining mechanical design, fabrication and material science, using in-house and industry facilities, for accelerator components and physics detectors.

Particle Beam Impact: comparison between simulation and experiment

Fabrication and Assembly

pre and post-irradiation

Mechanical & Materials Engineering (MME) Group : domains of activities

Design, Simulations and Measurements https://en.web.cern.ch/group/MME

- Largest design office at CERN using computer-aided design (CAD) software: 40 designers (Staff and Industrial Support).
- Engineering Unit: Advanced calculations, analyses and numerical simulations.
- Mechanical Measurements Lab: stress and strain, pressure, vibration and thermo-physical characterisation (4 K – RT – 2000 °C).

Fabrication

- Machining & Maintenance
- Preparation & Subcontracting
- Assembly & Forming

- 4000 m² of internal workshop facilities with state-of-the-art equipment, 50 technicians (Staff and Industrial Support): CNC machining, sheet metal work & welding, electron beam & laser, vacuum brazing, metallic additive manufacturing.
- External subcontracting service.

Materials, Metrology & NDT

- Material selection, analysis & metallurgy: optical microscopy, FIB, SEM, XRD, thin-film characterisation, mechanical testing (4 K – RT) and failure analysis.
- NDT: ultrasounds, radiography, micro computed tomography.
- 350 m² of internal metrology facilities: 3D Coordinate Measuring Machines (CMM)

Outline

- EN-MME group: mandate and structure
- The EN-MME Main Workshop
- Subcontracting activities

MME Mechanical Workshop

A real heritage of CERN (1957-2024) Guaranteeing 70 years know-how in fabrication of mechanical components for accelerator and experiments

Its core mission is to provide service to the Organization for:

- **Urgent needs** (repairing, tunnel interventions, urgent fabrication...)
- Prototypes / proof of principle
- Multi-technology fabrication projects

Knowledge Transfer to external collaborations and suppliers

Some numbers...

- Total workshop surface of ~4000 m2
- Featuring 40+ conventional and unconventional machines
- ~90 highly-skilled technical personnel
- Yearly turnover ~2500 fabrication 'jobs"

Multi-technology Components

Most of the equipment produced calls for (simple to) **complex interlacing** of different fabrication **technologies**

Behind these pics....

- 800+ fabrication steps
- 20+ technologies involved
- **1.1 MCHF**

Jacketed HL-LHC Crab Cavity

Machining Technologies

Multi-axis machining: **5-axis Milling / 4-axis Turning**, angled heads

Attainable features :

Accuracy : **few μm** Roughness (Ra / Sa) : **down to few nm**

Capable workpiece dimensions : **1 cm³** up to **6 m × 4 m × 3.5 m** // up to 20 tons

Machining Technologies

Multi-axis machining: **5-axis Milling / 4-axis Turning**, angled heads

Attainable features : Accuracy : **few μm** Roughness (Ra / Sa) : **down to few nm**

Capable workpiece dimensions : **1 cm³** up to **6 m × 4 m × 3.5 m** // up to 20 tons

SWELL Cavity

Non-Conventional Technologies

Spark Erosion

- Wire EDM (5 axis) : ٠
 - Taper angle (± 29° max), Rotary axis (Ø120 max) 0
 - Attainable features: Accuracy down to $\pm 5 \mu m$, Ra 0.2 0
- Die sink ٠
 - Attainable features: Ra 0.8 0

Additive Manufacturing (SLM)

Typical Applications: Volume Lightweight, Complex components, cooling 280 x 280 x 360 mm³ channels, small series Materials: Titanium (gr.5), Stainless Steel **Fast Wire Scanner** 316L, Niobium (Ti gr.5)

FILLX COMESIN

Thematic Industry Day-Precision Machining

13

HOM Coupler DQW

(Niobium)

11T Hybrid Test

Sheet Metal Forming & Joining Techniques

Wide variety of technologies & equipment:

- Rolling, Bending, Deep Drawing, Spinning
- Arc welding (TIG, MIG, Plasma), Beam welding (Electron Beam & Laser Beam)
- Vacuum Brazing & Thermal treatments

Strong emphasis on welding/brazing quality (ISO 3834 approach)

Specific know-how for on-site interventions in accelerator complex and Experiments

Sheet Metal Forming & Joining Techniques

Wide variety of technologies & equipment:

- Rolling, Bending, Deep Drawing, Spinning
- Arc welding (TIG, MIG, Plasma), Beam welding (Electron Beam & Laser Beam)
- Vacuum Brazing & Thermal treatments •

Strong emphasis on welding/brazing quality (ISO 3834 approach)

Specific know-how for on-site interventions in accelerator complex and Experiments

15

Dimensional Metrology

State of the art equipment to cover the full dimensional metrology. Accuracy from submicron. Size up to the several metres

Most accurate equipment: *Leitz PMM-C Infinity*

- Accuracy of 0.3 + L/1000 [μm]
- Airlock environment to maintain T and humidity conditions (VDE/VDI 2627)

Optical & Laser Systems

MetraSCAN & HandySCAN

- Accuracy: 65 μm 80 μm
- Compt. Size: 0.2 m 6 m

Computer µTomography

Zeiss Metrotom CT 1500

- Accuracy: 9 μm + L/50
- Compt. Size: Ø430 x 800 [mm]
- Voxel: ~ 7 μm
- Integr. Thckn.: Steel 50 mm

Fabrication Process Simulations

Easier and faster transition from process conception to produced parts. Less costs

- Streamline tool design activities and choice of process parameters
- Optimisation of trial phase
- Reduction of "human error" (complex tasks and high added value equipment)
- Better reproducibility & traceability

<u>CAM-Based</u> : Cinematics, Process Parameters & Tools

Multi-axial Milling & Turning, Wire Erosion, EB Welding

EdgeCAM Powermill WorkNC

Some R&D

- Multiple R&D routes being followed
- Within workshop major technologies & stemming from needs of the accelerator community

Milling/turning parameters & tools. Effect on coating and RF performance

Joining heterogeneous materials (e.g. Nb/Cu)

Novel lubrication strategies (cryogenic, MQL,..)

Thematic Industry Day-Precision Machining

Shaping and welding world's thinnest Alu bellows

Outline

- EN-MME group: mandate and structure
- The EN-MME Main Workshop
- Subcontracting activities

MME Subcontracting Service:

- In close collaboration with the CERN Procurement Department
- Strong contribution to balance the industrial return
- 2000-2500 contracts/year
 ~40% of overall production for
 mechanical components @ CERN

Subcontracting:

- ~ 40% of semi-finished parts
- ~ 60% of finished / turnkey components 900+ suppliers in all Member States

Full Complementarity with in-house portfolioseries additional technologies		Invoiced Jobs							
		2016	2017	2018	2019	2020	2021	2022	2023
J	Subcontracting MME-FS (MCHF)	10	13	13,5	10,7	8	6	8	8

Thematic Industry Day-Precision Machining

20

MME Subcontracting Service: Core & Recent Activities

Magnets

Prototypes & series of different magnets

MQXF

Superconducting Magnet

ELENA – Series production of electrostatic quadrupoles (x60). Synergy between EN-MME Workshop and EU suppliers.

- High precision CNC of small to large equipment
- Stamping, wire cut of laminations
- Cryostats

3x RMM prototype Coils for FCC project (R&D)

- High precision CNC machining
- EDM (wire erosion)

22

St. Steel 316L

...5 axes CNC machining, turning, EDM..

Thematic Industry Day-Precision Machining

Poles

22/11/2024

Magnets Tooling

Large Precise Tools for Magnet assembly

Magnetic Shields

Superconducting RF Cavities

- <u>Prototype</u>: .. Precise forming & joining of Niobium sheets (in-house).. **Precise Tools**
- <u>Series</u>: 100% industry
- Precision and surface quality of utmost importance for cavity performance

« Warm » RF Cavities

HIE- Isolde Cavities

- Long Overhang Machining from
 Monoblock Copper
- D320 x L900
- Tolerances in the tenth of mm..

Diverse RF Equipment

Crab Cavity: RF Feedthrough

EB welding & Ceramic brazing in reduced volume

Machining

RF waveguides Brass flanges

Beam Intercepting Devices: TIDVG4

Copper blocks: Large CNC milling

Assembling ...welding and tests in house..

Assembly inside tunnel

Beam Diagnostic Components

- Complex bulk pieces with knife-edges for UHV applications
- Raw material from CERN (316LN 3D forged blanks)

Handling, Lifting, Assembly Equipment

Handling Tool for Chemical Etching

> Remote Handling System for LHC Collimators

Bespoke Mechanical Lifting Equipment

AD Remote Handling Trolley

Lifting Equipment for WOW Cavity

Electronic / Power Racks

Custom electronic racks

Cooling system

Cu busbars + Ag coating

Custom power racks, with busbars

Custom boxes/panels + paint/coating + screen print / laser engraving

Electro-mecanical parts

Electrical locks

Magnets aluminium parts + gold coating

Polymer isolators

IGBT copper cooling system (additive manufacturing)

Faraday boxes

Ceramic isolator

Micro Brass nuts

High Vacuum Components

Pumping bypass for LHC

Collimator beam impact test

Technologies:

- Precision forming
 - (Rolling, Bending, Extrusions..)
- Vacuum brazing & heat treatments
- High precision CNC machining
- Bellows
- Electron beam welding / TIG welding
- Metrology
- UHV capabilities

Materials:

- Stainless Steel
- Inconel
- Titanium
- Aluminium
- Copper alloys

ISOLDE UHV Flanges

Y-chambers

Cryocooler Test Chamber

Vacuum Chambers

Precise forming into chambers of different sizes

•

•

•

PSB Ring

Inconel & SS alloys

UHV compliant fabrication

Thematic Industry Day-Precision Machining

Hippodrome edge-welded bellows

33

Always on the lookout for: Precision Vacuum Components

Pulled-nozzle chambers

Technologies:

- Precision forming
 - (Rolling, Bending, Extrusions..)
- Vacuum brazing & heat treatments
- Electron beam welding
- Precise machining
- Metrology
- UHV capabilities

Materials:

- Stainless Steel
- Inconel
- Titanium
- Aluminium

Pulled nozzles

Neck shaped by plastic deformation Obtained via pulling ogive through initial hole

Avoids welded saddle connections → Buttweld [+] easier weld, better quality [++] vacuum, RF, weld-induced deformations [++] possibility of NDT (X-Ray)

Pulled nozzle on pipe

Always on the lookout for: <u>Bellows</u>

...UHV, cryogenics, pressure equipment... Typical Dimensions: ~ Ø60, Ø80÷Ø120, ~Ø160

Edge-welded				
& Hydro-formed	Avg. per year (2018÷2022)	Peak year (2019)		
Number of POs	14	20		
Envelope (kCHF)	130	372		

36

Always on the lookout for: Plastics, Ceramics & Composites

- Magnet shims
- Insulators, spacers
- Standard components (washers, screws)
- Tools for assembly and protection

	(2014÷2017)	(2017)
Number of POs	115	160
Envelope (kCHF)	370	460

Dealerrage

Materials:

. . .

- POM, PP, Plexi, PVC
- PE at different densities
- PEEK, PTFE, PVDF, VESPEL
- EPGCxxx
- Alumina, Macor®
- ...

37

