THE OHIO STATE UNIVERSITY

Paramita Dasgupta CCAPP Fellow @ Ohio State University PIKIMO 2024, Univ. of Michigan, Ann Arbor

Radio Detection of Ultra High Energy Neutrinos with Askaryan Radio Array at South Pole

Goal of High Energy Neutrino Astrophysics

• What is the nature and cosmic distribution of the astrophysical accelerators that produces highest energy particles in the Universe?

• What are the fundamental particles & interactions of nature ?

Paramita Dasgupta, CCAPP, Ohio State Univ.

Neutron star Collision Credit NASA

Exciting Era of Multi-Messenger Astrophysics

Cosmic Rays (p, nuclei ~99%, 1% electron)

Multi-Messenger Astrophysics

Gamma Rays

Paramita Dasgupta, CCAPP, Ohio State Univ.

Neutrinos Astrophysical + Cosmogenic

Gravitational Waves

The Ultra High Energy Universe

By "UHE", I mean " $E\nu > 30 PeV$ "

Paramita Dasgupta, CCAPP, Ohio State Univ.

SNOWMASS CONTRIBUTION 2021 (M. ACKERMAN ET. AL.)

Why Study Neutrinos ?

- **1. Cosmic rays**
- Bent by magnetic field
- 2. Gamma rays: absorbed by CMB, EBL, dust

3. GW : Hard to point back to the source

4. Neutrinos open unique window to the high energy Universe.

- **Mighest energy observations of extragalactic** sources
- **Very distant sources**
- **Probe into opaque sources**
- **Carry information about the accelaration mechanism**

Astrophysical Neutrinos

Neutrinos born in (or near) the cosmic ray accelerators

Unambiguous proof of hadronic acceleration

Neutrinos have been Detected in 2012! (Only hints of sources)

first evidence of a neutrino source **4.2** σ Significance

AGN, NGC 1068

UHE Neutrino production: The GZK process

Cosmic Ray (E_p > 10^{19.5} \text{ eV})

Paramita Dasgupta, CCAPP, Ohio State Univ.

CMB photons

Energy (eV)

The Problem with Neutrino Astronomy

- Neutrinos are weakly interacting, very hard to detect them \bigcirc
- 0.003 GZK neutrinos/km³/year
- To get 1 GZK neutrinos we need > 1000 km³ of clean, dense dielectric medium

Solutions?

Wait for many decades to detect 1 GZK Neutrino Make many more IceCube 2

3) Try Something else (That's the fun part)

Instead of Optical, try Radio !!

EM shower in dielectric (ice, sand)

Radio Emission is stronger than optical for UHE showers Coherent radio Cherenkov radiation ($P \sim E^2$) if λ > Moliere radius

$E > 10^{18} eV$ E² >>>>> E

Paramita Dasgupta, CCAPP, Ohio State Univ.

moving negative charge excess

Typical Dimensions L ~ 10 m R_{Moliere} ~ 10 cm

9

The Need

Extremely large volume (1 to 10³ km³) of radio transparent medium

Ice is an excellent radio transparent medium

Ice is Dense!

Good target material for weakly-interacting particles

Ice is clean and cold!

Very transparent to electromagnetic radiation in the **MHz - GHz band!**

Long attenuation length of Radio signals in ice (~ 1 km) vs. ~ 100 meter for optical signal, used by IceCube

Paramita Dasgupta, CCAPP, Ohio State Univ.

Antarctica

Enormous Volume to detect neutrinos

Depth of ARA antennas ~ 2.2 times the height of the Statue of Liberty

Paramita Dasgupta, CCAPP, Ohio State Univ.

1 ARA station ~ 20 km³ ice

11

The Askaryan Radio Array (ARA)

Five independent stations have been collecting data for ~ a decade

ARA's 5th station is special

Paramita Dasgupta, CCAPP, Ohio State Univ.

HPol

VPol

A5 + PA system

ARA Station Deployment

A Phased Array Trigger Design

- Phased Array demonstrated capabilities of triggering on low SNR signals which are otherwise buried in noise
- Phased Array improves signal strength by combining multiple signals together before the signals are fed into the trigger system

- Adds signals together in predetermined directions ("beams") through delay-andsum method.
- Plane wave signals add coherently, noise likely does not. This effectively lowers trigger threshold

ARA's Ongoing UHE Neutrino Searches

Towards a Five Station Analysis

entire Askaryan Radio Array

Roughly 379 TB of data on disk

First array-wide search in deep stations

Paramita Dasgupta, CCAPP, Ohio State Univ.

Goal: Conduct diffuse neutrino search in livetime through 2023 leveraging the

Marco Muzio(UW Madison)

A Pioneering Hybrid Analysis

Combine PA & ARA subdetectors to maximize background rejection & analysis efficiency

- Hybrid design = Phased array + 7 A5 Vpols readout through the Phased Array DAQ
- **Unique detector, representative of next** generation of detectors like RNO-G & IceCube-Gen2
- Livetime : 2020 + 2021 data from hybrid system
- Optimize cuts for 5 σ discovery potential

Paramita Dasgupta, CCAPP, Ohio State Univ.

Paramita Dasgupta, Ohio State

Advantages of a Hybrid detector

- Excellent amizuth sensitivity with hybrid antennas
- ~2x zenith sensitivity to vertex position
- Precise in-ice reconstruction of events
- High background rejection based on direction and timing information

Reconstruction of Source location with A5-PA hybrid system

- **Excellent pointing accuracy with A5-PA antennas, improved vertex** reconstruction would lead to improved analysis efficiency
- Improved surface background removal using correlation map

Paramita Dasgupta, CCAPP, Ohio State Univ.

Reconstructed pulser source location using A5-PA hybrid antennas

< 0.6 degree resolution on vertex reconstruction

Background removal: Continuous Wave (CW) Signals

Paramita Dasgupta, CCAPP, Ohio State Univ.

Maximum Correlation

Analysis pipeline

Paramita Dasgupta, CCAPP, Ohio State Univ.

22

Separating Thermal Noise from Signal: Fisher Discriminant

LDA is a supervised Machine learning algorithm primarily used for classification tasks.

We are setting a cut for the best expected sensitivity.

Cut will be optimized for 5σ discovery using IceCube 2018 flux limit

Conclusion

Exciting times ahead!

energies with ARA experiment

experiments will directly feed in to future projects like IceCube-Gen2

Paramita Dasgupta, CCAPP, Ohio State Univ.

In 3-5 years, we will have the sensitivity to detect neutrinos at the highest

The hardware, simulation, and technology we are developing now for radio

Additional Slides

Cosmic Origin of Radiation

Cosmic Rays (1911)

Ionizing radiation detected in the atmosphere

Paramita Dasgupta, CCAPP, Ohio State Univ.

Fly's Eye (Utah) [1981–1992]

Pierre Auger Observatory, Argentina [2004 - Present]

The phased array detector

Analysis with PA antennas alone significantly improves trigger efficiency

Paramita Dasgupta, CCAPP, Ohio State Univ.

16

The Ultra High Energy Universe

Paramita Dasgupta, CCAPP, Ohio State Univ.

There are sources that make x 10⁴ more energetic than the neutrinos seen by IceCube (we've seen cosmic rays from them)

Types of Neutrinos We Aim to Detect

$$\rightarrow e^+ + \bar{\nu_{\mu}} + \nu_e$$

The Askaryan Radio Array (ARA)

Five independent stations have been collecting data for ~ a decade

The Phased Array detector

Paramita Dasgupta, CCAPP, Ohio State Univ.

14

Status of UHE neutrino searches with ARA data

- ARA collaboration is performing two analyses:

 - experiments.

Paramita Dasgupta, CCAPP, Ohio State Univ.

Highly-coordinated, multi-institution analysis with full array

A pioneering analysis that will lead next-generation of

Example analysis variables

Separating Thermal Noise from Signal: Fisher Discriminant

LDA is a supervised Machine learning algorithm primarily used for classification tasks.

- We train linear discriminant to maximize separation in our selection variable space.
- Final variable is LDA value from data and simulation

Paramita Dasgupta, CCAPP, Ohio State Univ.

additional simulations underway

Separating Thermal Noise from Signal: Fisher Discriminant

We are setting a cut for the best expected sensitivity.

Cut will be optimized for 5 σ discovery using IceCube 2018 flux limit

Interesting results from ARA in a few months !

We are conducting 2 analyses with ARA data

- 1. Pioneering analysis with a hybrid detector system : PA antennas + traditional antennas
 - Proof of concept for next-generation large in-ice radio array RNO-G (35 stations) & IceCube-Gen2 Radio (361 stations)
- 2. Highly-coordinated, multi-institution analysis with all 5 ARA stations' data

These 2 analyses will yield either:

First UHE neutrino candidates !! \bigcirc Strongest flux limit up to 10³ EeV (10²¹ eV) from any radio \bigcirc

experiment to date !

PUEO Experiment: Brief Introduction

Payload for Ultrahigh Energy Observations

- Radio detection experiment
- NASA Long Duration Balloon flight over Antarctica
- Will measure the ultrahigh energy neutrinos' interactions with the Earth
 - >1 EeV (10¹⁸ eV)!

Paramita Dasgupta, CCAPP, Ohio State Univ.

cost cap \$20M, 5-year m

How It Works?

Paramita Dasgupta, CCAPP, Ohio State Univ.

Balloon + payload will drift with stratospheric winds 30-45 days long mission in Dec 2025

Courtesy: A. Vieregg

How It Works?

Paramita Dasgupta, CCAPP, Ohio State Univ.

Signals are Vertically polarized

You look at the top of Cherenkov cone from the balloon

Paramita Dasgupta, CCAPP, Ohio State Univ.

- Signals are horizontally polarized
- Comes from below the horizon

Courtesy: A. Vieregg

How It Works?

Paramita Dasgupta, CCAPP, Ohio State Univ.

Signals are Horizontally polarized

Our work at IIT Kanpur (under the guidance of Prof. Pankaj Jain)

Astroparticle Physics Volume 128, March 2021, 102530

General treatment of reflection of spherical electromagnetic waves from a spherical surface and its implications for the ANITA anomalous polarity events

Paramita Dasgupta 🖾 , Pankaj Jain Ӓ 🖾

Show more V

+ Add to Mendeley 😪 Share 🗾 Cite

https://doi.org/10.1016/j.astropartphys.2020.102530 7

Get rights and content 7

Abstract

We develop a general formalism to treat reflection of spherical electromagnetic waves or, more precisely, dipole radiation from a spherical surface. Our main objective is interpretation of radio wave signals produced by cosmic ray interactions with Earth's atmosphere which are observed by the <u>Antarctica</u> based ANITA detector after reflection

nce Elevation Model of Antarctica (REMA) data

Paramita Dasgupta, CCAPP, Ohio State Univ.

r/d power ratio compared with HiCal data

S. Prohira, A. Novikov, P. Dasgupta, P. Jain et al (ANITA collaboration)

P. Dasgupta and P. Jain https://doi.org/10.1016/j.astropartphys.2020.102530

Status of PUEO

PUEO Collaboration Meeting, April 2024, Ohio State Univ

Courtesy: A. Vieregg

Paramita Dasgupta, CCAPP, Ohio State Univ.

Courtesy: A. Vieregg

The Radio Neutrino Observatory (RNO-G) Experiment in Greenland

Drilling of deep holes in the Greenland Ice

RNO-G Station Layout

RNO-G Deployment 2022 : My time on the Greenland Icesheet

RNO-G Deployment 2022 : My time on the Greenlandic Icesheet

RNO-G Deployment 2022 : My time on the Greenland Icesheet

SUMMIT STATION 72.58°N, 38.46°W, 3256 M **OCTOBER 2017**

Winter storage berms

Aircraft taxiway

SMG SOB

Fuel tanks

Skiway

Green House, **Berthing Module** and Clinic (+)

Microturbine Snow melter

Emergency generator Power distribution hut

Snow mine

Big House

TAWO (700 m)

Surveying of RNO-G stations post deployment

First ever UHE neutrino search with Decade long livetime

- Kotera et al. flux: ~ 3.1 events
- van Vliet et al. (Auger) flux: ~ 14.4 events
- IceCube 2018 limit flux: ~ 18.5 events

Stay tuned !!

The Phased Array

Paramita Dasgupta, CCAPP, Ohio State Univ.

Improved Trigger efficiency

Analysis Efficiency

Astrophysical Neutrinos

Neutrinos born in (or near) the cosmic ray accelerators

Unambiguous proof of hadronic acceleration

Neutrinos have been Detected in 2012! (Only hints of sources)

first evidence of a neutrino source **4.2** σ Significance

AGN, NGC 1068

UHE Neutrino production: The GZK process

Cosmic Ray

Paramita Dasgupta, CCAPP, Ohio State Univ.

CMB photons

Classification of ARA data

1. Calibration Pulser Events

Recoded every second for in-situ calibration

2. Software Trigger Events (Forced Triggers)

Recorded every second to monitor the detector performance, sample the noise environment

3. RF Trigger Events

Mostly thermal events + non-thermal background (eg, CR, CW, anthropogenic events,) + non-thermal ν -induced signal events

Paramita Dasgupta, CCAPP, Ohio State Univ.

Time (ns)

The 5th Station of ARA

Paramita Dasgupta, CCAPP, Ohio State Univ.

A5 + PA system

Calibration for ARA stations

The Calibration of the Geometry and Antenna delay in Askaryan Radio Array Station 4 and 5

Paramita Dasgupta^{a,*}Kaeli Hughes^b on behalf of the ARA Collaboration (a complete list of authors can be found at the end of the proceedings)

- ^aUniversité Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
- ^bDept. of Physics, Enrico Fermi Inst., Kavli Inst. for Cosmological Physics, University of Chicago, Chicago, IL 60637, U.S.A.
- *E-mail:* paramita.dasgupta@ulb.be, kahuges@uchicago.edu

