Two-Higgs-Doublet Model **Effective Field Theory**

PIKIMO 17 - University of Michigan November 16, 2024

Based on Phys. Rev. D 110, 035026 (2024) w/ Radovan Dermisek

Keith Hermanek Indiana University

INDIANA UNIVERSITY BLOOMINGTON

Wilson coefficients $C_i \propto \Lambda^{4-d}$ for d > 4

Effective Field Theories

New physics affects *low energy* observables from non-renormalizable operators with

- Some UV theory can describe at low energies the SM (SMEFT) •
- Maybe some other theory can contain additional Higgs scalars \bullet H, A, H^{\pm} and can be integrated out $v \ll M_2 \simeq \Lambda$
 - This has been realized in the non-linear Higgs Effective ulletTheory

J. High Energy Phys. 10 036 (2015)

Phys. Rev. D 109, 075022 (2024)

- \bullet

UV 1 UV 2 Heavy fields from the high-energy theory are integrated out **2HDM EFT** v (EW) **SM** + new Higgses: H, A, H^{\pm} $\mathscr{L} = \mathscr{L}_{2HDM} + \sum_{i} C_{i}^{(5)} \mathcal{O}_{i}^{(5)} + \sum_{i} C_{i}^{(6)} \mathcal{O}_{i}^{(6)}$

Motivation

Now, let's assume that the low energy theory is described by not only the SM particles **but new Higgses** H, A, H^{\pm}

Why? The 2HDM is one of the simplest extensions of the SM by adding one additional Higgs doublet

Can also be specified further by how the Higgs doublets couple to fermions (type-I, II, X, and Y)

Although there are new neutral and charged Higgses, their masses **could be heavy** (and integrated out) or light and should be kept in the low energy theory

Previous groups have looked at the CP-conserving case with Z_2 symmetry only, however, misidentified operators that are unique in the types of 2HDMs

J. High Energy Phys. 09 160 (2016)

Other groups have attempted to construct the general 2HDM EFT, but couldn't find some sets of linearly independent operators

> J. High Energy Phys. 10 048 (2017) J. High Energy Phys. 09 035 (2019)

$$\Phi_1 = \begin{pmatrix} \Phi_1^+ \\ \Phi_1^0 \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \Phi_2^+ \\ \Phi_2^0 \end{pmatrix} \qquad \Phi_1^{\pm} = G^{\pm} \cos \hat{\beta}^{\pm} - H^{\pm} \sin \hat{\beta}^{\pm} \qquad \Phi_1^0 = v_1 + \frac{1}{\sqrt{2}} (-h \sin \hat{\alpha} + H \cos \hat{\alpha} + iG \cos \hat{\beta} - iA \sin \hat{\beta}) + iA \cos \hat{\beta}^{\pm} \qquad \Phi_2^0 = v_2 + \frac{1}{\sqrt{2}} (h \cos \hat{\alpha} + H \sin \hat{\alpha} + iG \sin \hat{\beta} + iA \cos \hat{\beta})$$

New Higgs scalars

$$\{H, A, H^{\pm}\}$$

- β is the **vacuum angle**
- $\hat{\beta}, \hat{\beta}^{\pm}$ rotate the *CP*-odd and charged scalars to the $\{G, A\}$ and $\{G^{\pm}, H^{\pm}\}$ basis
- $\hat{\alpha}$ rotates the *CP*-even scalars to the $\{h, H\}$ basis

Higgs Doublets

• If there's CP conservation in the scalar sector, then the doublets have the following components:

 $\sqrt{2}$

$$v = 174 \ GeV$$
 $v_1 \equiv v \cos \beta$ $v_2 \equiv v \sin \beta$

(··) Tells us which Higgs doublets are being contracted together

$\psi^2 \phi^3$

 $\psi^2 X \phi$

Mass operators $\psi^2 \phi^3$ (48)

Dipole operators $\psi^2 X \phi$ (32)

$$\begin{array}{l} \mathcal{O}_{l\Phi_{1}}^{(11)} = \bar{l}_{L}e_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{1}) \\ \mathcal{O}_{l\Phi_{1}}^{(22)} = \bar{l}_{L}e_{R}\Phi_{1}(\Phi_{2}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{l\Phi_{1}}^{(21)} = \bar{l}_{L}e_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{l\Phi_{1}}^{(12)} = \bar{l}_{L}e_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{l\Phi_{2}}^{(22)} = \bar{l}_{L}e_{R}\Phi_{2}(\Phi_{2}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{l\Phi_{2}}^{(21)} = \bar{l}_{L}e_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{1}) \\ \mathcal{O}_{l\Phi_{2}}^{(21)} = \bar{l}_{L}e_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{l\Phi_{2}}^{(12)} = \bar{l}_{L}e_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{lB\Phi_{1}}^{(12)} = \bar{l}_{L}\sigma^{\mu\nu}e_{R}\Phi_{1}B_{\mu\nu} \\ \mathcal{O}_{lW\Phi_{1}} = \bar{l}_{L}\sigma^{\mu\nu}e_{R}\Phi_{2}B_{\mu\nu} \\ \mathcal{O}_{lB\Phi_{2}} = \bar{l}_{L}\sigma^{\mu\nu}e_{R}\Phi_{2}B_{\mu\nu} \\ \mathcal{O}_{lW\Phi_{2}} = \bar{l}_{L}\sigma^{\mu\nu}e_{R}\tau^{a}\Phi_{2}W_{\mu\nu}^{a} \end{array}$$

(Warsaw-like basis) J. High Energy Phys. 10 085 (2010)

Lepton-violating (Weinberg) operators

$$\mathcal{O}_{\nu\nu\Phi}^{(11)} = (\mathbf{\Phi}_1 \cdot l_L)^T \mathbf{C} (\mathbf{\Phi}_1 \cdot l_L),$$

$$\mathcal{O}_{\nu\nu\Phi}^{(22)} = (\mathbf{\Phi}_2 \cdot l_L)^T \mathbf{C} (\mathbf{\Phi}_2 \cdot l_L),$$

$$\mathcal{O}_{\nu\nu\Phi}^{(12)} = (\mathbf{\Phi}_1 \cdot l_L)^T \mathbf{C} (\mathbf{\Phi}_2 \cdot l_L),$$

$$\begin{split} \mathcal{O}_{d\Phi_{1}}^{(11)} &= \bar{q}_{L}d_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{1}) \\ \mathcal{O}_{d\Phi_{1}}^{(22)} &= \bar{q}_{L}d_{R}\Phi_{1}(\Phi_{2}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{d\Phi_{1}}^{(21)} &= \bar{q}_{L}d_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{d\Phi_{2}}^{(12)} &= \bar{q}_{L}d_{R}\Phi_{2}(\Phi_{2}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{d\Phi_{2}}^{(22)} &= \bar{q}_{L}d_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{1}) \\ \mathcal{O}_{d\Phi_{2}}^{(11)} &= \bar{q}_{L}d_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{1}) \\ \mathcal{O}_{d\Phi_{2}}^{(21)} &= \bar{q}_{L}d_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{d\Phi_{2}}^{(12)} &= \bar{q}_{L}d_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{dB\Phi_{1}} &= \bar{q}_{L}\sigma^{\mu\nu}d_{R}\Phi_{1}B_{\mu\nu} \\ \mathcal{O}_{dW\Phi_{1}} &= \bar{q}_{L}\sigma^{\mu\nu}\lambda^{a}d_{R}\Phi_{1}G_{\mu\nu}^{a} \\ \mathcal{O}_{dG\Phi_{2}} &= \bar{q}_{L}\sigma^{\mu\nu}\lambda^{a}d_{R}\Phi_{2}B_{\mu\nu} \\ \mathcal{O}_{dB\Phi_{2}} &= \bar{q}_{L}\sigma^{\mu\nu}\lambda^{a}d_{R}\Phi_{2}G_{\mu\nu}^{a} \\ \mathcal{O}_{dW\Phi_{2}} &= \bar{q}_{L}\sigma^{\mu\nu}\lambda^{a}d_{R}\Phi_{2}G_{\mu\nu}^{a} \end{split}$$

$$\begin{aligned} \mathcal{O}_{u\Phi_{1}}^{(11)} &= \bar{q}_{L} u_{R} \cdot \Phi_{1}^{\dagger} (\Phi_{1}^{\dagger} \Phi_{1} \\ \mathcal{O}_{u\Phi_{1}}^{(22)} &= \bar{q}_{L} u_{R} \cdot \Phi_{1}^{\dagger} (\Phi_{2}^{\dagger} \Phi_{2} \\ \mathcal{O}_{u\Phi_{1}}^{(21)} &= \bar{q}_{L} u_{R} \cdot \Phi_{1}^{\dagger} (\Phi_{2}^{\dagger} \Phi_{1} \\ \mathcal{O}_{u\Phi_{1}}^{(12)} &= \bar{q}_{L} u_{R} \cdot \Phi_{1}^{\dagger} (\Phi_{1}^{\dagger} \Phi_{2} \\ \mathcal{O}_{u\Phi_{2}}^{(22)} &= \bar{q}_{L} u_{R} \cdot \Phi_{2}^{\dagger} (\Phi_{2}^{\dagger} \Phi_{2} \\ \mathcal{O}_{u\Phi_{2}}^{(11)} &= \bar{q}_{L} u_{R} \cdot \Phi_{2}^{\dagger} (\Phi_{1}^{\dagger} \Phi_{1} \\ \mathcal{O}_{u\Phi_{2}}^{(21)} &= \bar{q}_{L} u_{R} \cdot \Phi_{2}^{\dagger} (\Phi_{1}^{\dagger} \Phi_{2} \\ \mathcal{O}_{u\Phi_{2}}^{(12)} &= \bar{q}_{L} u_{R} \cdot \Phi_{2}^{\dagger} (\Phi_{1}^{\dagger} \Phi_{2} \\ \mathcal{O}_{uB\Phi_{1}}^{(12)} &= \bar{q}_{L} \sigma^{\mu\nu} u_{R} \cdot \Phi_{1}^{\dagger} B_{\mu} \\ \mathcal{O}_{uW\Phi_{1}} &= \bar{q}_{L} \sigma^{\mu\nu} u_{R} \cdot \Phi_{1}^{\dagger} B_{\mu} \\ \mathcal{O}_{uG\Phi_{1}} &= \bar{q}_{L} \sigma^{\mu\nu} u_{R} \cdot \Phi_{1}^{\dagger} B_{\mu} \\ \mathcal{O}_{uB\Phi_{2}} &= \bar{q}_{L} \sigma^{\mu\nu} u_{R} \cdot \Phi_{2}^{\dagger} B_{\mu} \\ \mathcal{O}_{uW\Phi_{2}} &= \bar{q}_{L} \sigma^{\mu\nu} u_{R} \cdot \Phi_{2}^{\dagger} B_{\mu} \\ \mathcal{O}_{uW\Phi_{2}} &= \bar{q}_{L} \sigma^{\mu\nu} \lambda^{a} u_{R} \cdot \Phi_{2}^{\dagger} \\ \mathcal{O}_{uG\Phi_{2}} &= \bar{q}_{L} \sigma^{\mu\nu} \lambda^{a} u_{R} \cdot \Phi_{2}^{\dagger} \end{aligned}$$

 $\psi^2 \phi^2 D$

$$\begin{split} \mathcal{O}_{\Phi_{e}}^{(11)} &= (\Phi_{1}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{1})(\bar{e}_{R}\gamma^{\mu}e_{R}) \\ \mathcal{O}_{\Phi_{e}}^{(22)} &= (\Phi_{2}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{2})(\bar{e}_{R}\gamma^{\mu}e_{R}) \\ \mathcal{O}_{\Phi_{e}}^{(12)} &= (\Phi_{1}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{2})(\bar{e}_{R}\gamma^{\mu}e_{R}) + \text{H.c.} \\ \mathcal{O}_{\Phi_{l}}^{(11)[1]} &= (\Phi_{1}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{1})(\bar{l}_{L}\gamma^{\mu}l_{L}) \\ \mathcal{O}_{\Phi_{l}}^{(22)[1]} &= (\Phi_{2}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{2})(\bar{l}_{L}\gamma^{\mu}l_{L}) \\ \mathcal{O}_{\Phi_{l}}^{(12)[1]} &= (\Phi_{1}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{2})(\bar{l}_{L}\gamma^{\mu}l_{L}) + \text{H.c.} \\ \mathcal{O}_{\Phi_{l}}^{(11)[3]} &= (\Phi_{1}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{1})(\bar{l}_{L}\tau^{a}\gamma^{\mu}l_{L}) \\ \mathcal{O}_{\Phi_{l}}^{(22)[3]} &= (\Phi_{2}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{2})(\bar{l}_{L}\tau^{a}\gamma^{\mu}l_{L}) \\ \mathcal{O}_{\Phi_{l}}^{(12)[3]} &= (\Phi_{1}^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi_{2})(\bar{l}_{L}\tau^{a}\gamma^{\mu}l_{L}) + \text{H.c.} \end{split}$$

Left- or right-handed covariant derivative operators $\psi^2 \phi^2 D$ (34)

$$\Phi_{1,2}^{\dagger} \overleftrightarrow{D}_{\mu} \Phi_{1,2} \equiv \left(\Phi_{1,2}^{\dagger} (D_{\mu} \Phi_{1,2}) - (D_{\mu} \Phi_{1,2})^{\dagger} \Phi_{1,2} \right)$$

Antisymmetric combinations of covariant derivatives

$$\begin{split} \mathcal{O}_{\Phi d}^{(11)} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{d}_R \gamma^{\mu} d_R) \\ \mathcal{O}_{\Phi d}^{(22)} &= (\Phi_2^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{d}_R \gamma^{\mu} d_R) \\ \mathcal{O}_{\Phi d}^{(12)} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{d}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u}^{(11)} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} u_R) \\ \mathcal{O}_{\Phi u}^{(22)} &= (\Phi_2^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{u}_R \gamma^{\mu} u_R) + \text{H.c.} \\ \mathcal{O}_{\Phi q}^{(12)} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{u}_R \gamma^{\mu} u_R) + \text{H.c.} \\ \mathcal{O}_{\Phi q}^{(11)[1]} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{q}_L \gamma^{\mu} q_L) \\ \mathcal{O}_{\Phi q}^{(22)[1]} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{q}_L \gamma^{\mu} q_L) + \text{H.c.} \\ \mathcal{O}_{\Phi q}^{(12)[1]} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{q}_L \tau^{\mu} \gamma^{\mu} q_L) + \text{H.c.} \\ \mathcal{O}_{\Phi q}^{(12)[3]} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{q}_L \tau^a \gamma^{\mu} q_L) \\ \mathcal{O}_{\Phi q}^{(22)[3]} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{q}_L \tau^a \gamma^{\mu} q_L) + \text{H.c.} \\ \mathcal{O}_{\Phi q}^{(12)[3]} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{q}_L \tau^a \gamma^{\mu} q_L) + \text{H.c.} \\ \mathcal{O}_{\Phi q}^{(12)[3]} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{q}_L \tau^a \gamma^{\mu} q_L) + \text{H.c.} \\ \mathcal{O}_{\Phi q}^{(12)[3]} &= (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{q}_L \tau^a \gamma^{\mu} q_L) + \text{H.c.} \\ \mathcal{O}_{\Phi q}^{(12)[3]} &= (\Phi_1 \cdot i D_\mu \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(22)} &= (\Phi_2 \cdot i D_\mu \Phi_2) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} d_R) + \text{H.c.} \\ \mathcal{O}_{\Phi u d}^{(21)} &= (\Phi_2 i \cdot \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{$$

$$\Phi_{1,2}^{\dagger} \overleftrightarrow{D}_{\mu}^{a} \Phi_{1,2} \equiv \left(\Phi_{1,2}^{\dagger} \tau^{a} (D_{\mu} \Phi_{1,2}) - (D_{\mu} \Phi_{1,2})^{\dagger} \tau^{a} \Phi_{1,2} \right)$$

 $\phi^4 D^2$

 ϕ^6

Scalar derivative operators $\phi^4 D^2$ (20)

Scalar operators ϕ^{6} (20)

Symmetric combinations of covariant derivatives

 $\left(\Phi_{1,2}^{\dagger}(D_{\mu}\Phi_{1,2}) + (D_{\mu}\Phi_{1,2})^{\dagger}\Phi_{1,2}\right) = \partial_{\mu}(\Phi_{1,2}^{\dagger}\Phi_{1,2})$

 $\mathcal{O}_{\Phi\partial^2}^{(11)(11)} = \partial_{\mu}(\Phi_1^{\dagger}\Phi_1)\partial^{\mu}(\Phi_1^{\dagger}\Phi_1)$ $\mathcal{O}^{(22)(22)}_{\Phi\partial^2} = \partial_\mu (\Phi_2^\dagger \Phi_2) \partial^\mu (\Phi_2^\dagger \Phi_2)$ $\mathcal{O}_{\Phi\partial^2}^{(11)(22)} = \partial_\mu (\Phi_1^{\dagger} \Phi_1) \partial^\mu (\Phi_2^{\dagger} \Phi_2)$ $\mathcal{O}_{\Phi\partial^2}^{(21)(21)} = \partial_{\mu}(\Phi_2^{\dagger}\Phi_1)\partial^{\mu}(\Phi_2^{\dagger}\Phi_1) + \text{H.c.}$ $\mathcal{O}^{(21)(12)}_{\Phi\partial^2} = \partial_\mu (\Phi_2^\dagger \Phi_1) \partial^\mu (\Phi_1^\dagger \Phi_2)$ $\mathcal{O}_{\Phi\partial^2}^{(21)(11)} = \partial_{\mu}(\Phi_2^{\dagger}\Phi_1)\partial^{\mu}(\Phi_1^{\dagger}\Phi_1) + \text{H.c.}$ $\mathcal{O}_{\Phi^{2^2}}^{(21)(22)} = \partial_{\mu}(\Phi_2^{\dagger}\Phi_1)\partial^{\mu}(\Phi_2^{\dagger}\Phi_2) + \text{H.c.}$ $\mathcal{O}^{(11)(11)(11)}_{\Phi} = (\Phi_1^{\dagger} \Phi_1)^3$ $\mathcal{O}_{\Phi}^{(11)(11)(22)} = (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_2^{\dagger} \Phi_2)$ $\mathcal{O}_{\Phi}^{(11)(22)(22)} = (\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2)^2$ $\mathcal{O}_{\Phi}^{(11)(11)(21)} = (\Phi_1^{\dagger}\Phi_1)^2(\Phi_2^{\dagger}\Phi_1) + \text{H.c.}$ $\mathcal{O}^{(22)(22)(21)}_{\Phi} = (\Phi_2^{\dagger}\Phi_2)^2(\Phi_2^{\dagger}\Phi_1) + \text{H.c.}$ $\mathcal{O}^{(22)(22)(22)}_{\pm} = (\Phi_2^{\dagger}\Phi_2)^3$

 $\mathcal{O}_{\Phi D}^{(11)(11)} = (\Phi_1^{\dagger} \overleftrightarrow{D}_{\mu} \Phi_1) (\Phi_1^{\dagger} \overleftrightarrow{D}^{\mu} \Phi_1)$ $\mathcal{O}_{\Phi D}^{(22)(22)} = (\Phi_2^{\dagger} \overleftrightarrow{D}_{\mu} \Phi_2) (\Phi_2^{\dagger} \overleftrightarrow{D}^{\mu} \Phi_2)$ $\mathcal{O}_{\Phi D}^{(11)(22)} = (\Phi_1^{\dagger} \overleftrightarrow{D}_{\mu} \Phi_1) (\Phi_2^{\dagger} \overleftrightarrow{D}^{\mu} \Phi_2)$ $\mathcal{O}_{\Phi D}^{(21)(21)} = (\Phi_2^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \Phi_1) (\Phi_2^{\dagger} \overset{\leftrightarrow}{D}^{\mu} \Phi_1) + \text{H.c.}$ $\mathcal{O}_{\Phi D}^{(21)(12)} = (\Phi_2^{\dagger} \overleftrightarrow{D}_{\mu} \Phi_1) (\Phi_1^{\dagger} \overleftrightarrow{D}^{\mu} \Phi_2)$ $\mathcal{O}_{\Phi D}^{(21)(11)} = (\Phi_2^{\dagger} \overleftrightarrow{D}_{\mu} \Phi_1) (\Phi_1^{\dagger} \overleftrightarrow{D}^{\mu} \Phi_1) + \text{H.c.}$ $\mathcal{O}_{\Phi D}^{(21)(22)} = (\Phi_2^{\dagger} \overleftrightarrow{D}_{\mu} \Phi_1) (\Phi_2^{\dagger} \overleftrightarrow{D}^{\mu} \Phi_2) + \text{H.c.}$ $\mathcal{O}_{\Phi}^{(11)(21)(21)} = (\Phi_1^{\dagger} \Phi_1)(\Phi_2^{\dagger} \Phi_1)^2 + \text{H.c.}$ $\mathcal{O}_{\Phi}^{(11)(21)(12)} = (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2)$ $\mathcal{O}_{\Phi}^{(22)(21)(21)} = (\Phi_2^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1)^2 + \text{H.c.}$ $\mathcal{O}_{\Phi}^{(22)(21)(12)} = (\Phi_2^{\dagger} \Phi_2)(\Phi_2^{\dagger} \Phi_1)(\Phi_1^{\dagger} \Phi_2)$ $\mathcal{O}^{(21)(21)(21)}_{\Phi} = (\Phi^{\dagger}_{2}\Phi_{1})^{3} + \text{H.c.}$ $\mathcal{O}^{(21)(21)(12)}_{\Phi} = (\Phi_2^{\dagger} \Phi_1)^2 (\Phi_1^{\dagger} \Phi_2) + \text{H.c.}$ $\mathcal{O}_{\Phi}^{(11)(22)(21)} = (\Phi_1^{\dagger} \Phi_1)(\Phi_2^{\dagger} \Phi_2)(\Phi_2^{\dagger} \Phi_1) + \text{H.c.}$

 ϕ^6 operators affect the vacuum stability and scalar masses

 $\phi^4 D^2$ operators affect the gauge masses and kinetic terms of the scalars

X^3 operators SAME as in SMEFT (4)

<i>X</i> ³	${\cal O}_W=\epsilon^{abc}W^{a u}_\mu W^{b\sigma}_ u W^{c\mu}_\sigma$	$\mathcal{O}_{ ilde{W}}=\epsilon^{ab}$
	$\mathcal{O}_G = f^{abc} G^{a\nu}_\mu G^{b\sigma}_ u G^{c\mu}_\sigma$	$\mathcal{O}_{ ilde{G}}=f^{ab}$
$X^2 \phi^2$	$\mathcal{O}^{(11)}_{\Phi G}=(\Phi^{\dagger}_{1}\Phi_{1})G^{a}_{\mu u}G^{a\mu u}$	$\mathcal{O}_{\Phi W}^{(11)} = (0$
	$\mathcal{O}^{(22)}_{\Phi G}=(\Phi^{\dagger}_{2}\Phi_{2})G^{a}_{\mu u}G^{a\mu u}$	$\mathcal{O}_{\Phi W}^{(22)}=(0$
	$\mathcal{O}^{(21)}_{\Phi G}=(\Phi^{\dagger}_{2}\Phi_{1})G^{a}_{\mu u}G^{a\mu u}+ ext{H.c.}$	$\mathcal{O}_{\Phi W}^{(21)}=(0$
	$\mathcal{O}^{(11)}_{oldsymbol{\Phi} ilde{G}} = (oldsymbol{\Phi}^\dagger_1 oldsymbol{\Phi}_1) ilde{G}^a_{\mu u} G^{a\mu u}$	$\mathcal{O}_{\Phi ilde{W}}^{(11)} = (0$
Scalar-gauge	$\mathcal{O}_{\Phi\tilde{G}}^{(22)} = (\Phi_2^{\dagger}\Phi_2)\tilde{G}^a_{\mu\nu}G^{a\mu\nu}$	$\mathcal{O}_{\Phi \tilde{W}}^{(22)} = (\Phi$
operators	$\mathcal{O}_{\Phi ilde{G}}^{(21)} = (\Phi_2^\dagger \Phi_1) ilde{G}_{\mu u}^a G^{a\mu u} + ext{H.c.}$	$\mathcal{O}_{\Phi ilde W}^{(21)} = (0$
$X^2 oldsymbol{\phi}^2$ (32)	$\mathcal{O}_{\Phi B}^{(11)}=(\Phi_1^\dagger\Phi_1)B_{\mu u}B^{\mu u}$	$\mathcal{O}_{\Phi WB}^{(11)} = 0$
	$\mathcal{O}^{(22)}_{\Phi B}=(\Phi^{\dagger}_{2}\Phi_{2})B_{\mu u}B^{\mu u}$	$\mathcal{O}_{\Phi WB}^{(22)} = 0$
	$\mathcal{O}_{\Phi B}^{(21)} = (\Phi_2^\dagger \Phi_1) B_{\mu u} B^{\mu u} + ext{H.c.}$	$\mathcal{O}_{\Phi WB}^{(21)} = 0$
	$\mathcal{O}^{(11)}_{\Phi ilde{B}}=(\Phi^{\dagger}_{1}\Phi_{1}) ilde{B}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\Phi\tilde{W}B}^{(11)} = 0$
	$\mathcal{O}^{(22)}_{\Phi ilde{B}}=(\Phi^{\dagger}_{2}\Phi_{2}) ilde{B}_{\mu u}B^{\mu u}$	$\mathcal{O}^{(22)}_{\Phi \tilde{W}B} = 0$
	$\mathcal{O}^{(21)}_{\Phi ilde{B}}=(\Phi^{\dagger}_{2}\Phi_{1}) ilde{B}_{\mu u}B^{\mu u}+ ext{H.c.}$	$\mathcal{O}^{(21)}_{\Phi \tilde{W} B} = 0$

 $X^2 \phi^2$ operators affects kinetic terms of gauge bosons

48 + 32 + 34 + 20 + 20 + 32 + 4 + 38 = 228Total:

 $\tilde{W}^{c}_{\mu}\tilde{W}^{a
u}_{\mu}W^{b\sigma}_{
u}W^{c\mu}_{\sigma}$ $\tilde{G}^{a
u}_{\mu}G^{b\sigma}_{
u}G^{c\mu}_{\sigma}$ $\Phi_1^{\dagger}\Phi_1)W^a_{\mu
u}W^{a\mu
u}$ $\Phi_2^{\dagger}\Phi_2)W^a_{\mu
u}W^{a\mu
u}$ $(\Phi_2^{\dagger}\Phi_1)W^a_{\mu\nu}W^{a\mu\nu}$ + H.c. $\Phi_1^{\dagger}\Phi_1) ilde{W}^a_{\mu
u}W^{a\mu
u}$ $(\Phi_2^{\dagger}\Phi_2) \tilde{W}^a_{\mu
u} W^{a\mu
u}$ $(\Phi_2^{\dagger}\Phi_1)\tilde{W}^a_{\mu\nu}W^{a\mu\nu}$ + H.c. $(\Phi_1^\dagger au^a \Phi_1) W^a_{\mu
u} B^{\mu
u}$ $(\Phi_2^\dagger au^a \Phi_2) W^a_{\mu
u} B^{\mu
u}$ $(\Phi_2^{\dagger} \tau^a \Phi_1) W^a_{\mu\nu} B^{\mu\nu} + \text{H.c.}$ $(\Phi_1^\dagger au^a \Phi_1) ilde W^a_{\mu
u} B^{\mu
u}$ $(\Phi_2^\dagger au^a \Phi_2) ilde W^a_{\mu
u} B^{\mu
u}$ $(\Phi_2^{\dagger} \tau^a \Phi_1) \tilde{W}^a_{\mu\nu} B^{\mu\nu} + \text{H.c.}$

ψ^4 operators SAME as in SMEFT (38)

$\mathcal{O}_{ll} = (ar{l}_L \gamma^\mu l_L) (ar{l}_L \gamma_\mu l_L)$	${\cal O}_{ee}=(ar e_R\gamma^\mu e_R)(ar e_R\gamma_\mu e_R)$
$\mathcal{O}_{qq}^{(1)}=(ar{q}_L\gamma^\mu q_L)(ar{q}_L\gamma_\mu q_L)$	${\cal O}_{dd} = (ar d_R \gamma^\mu d_R) (ar d_R \gamma_\mu d_R)$
$\mathcal{O}_{qq}^{(3)} = (ar{q}_L au^a \gamma^\mu q_L) (ar{q}_L au^a \gamma_\mu q_L)$	${\cal O}_{uu}=(ar u_R\gamma^\mu u_R)(ar u_R\gamma_\mu u_R)$
$\mathcal{O}_{lq}^{(1)} = (ar{l}_L \gamma^\mu l_L) (ar{q}_L \gamma_\mu q_L)$	${\cal O}_{ed} = (ar e_R \gamma^\mu e_R) (ar d_R \gamma_\mu d_R)$
$\mathcal{O}_{le} = (\bar{l}_L \gamma^\mu l_L) (\bar{e}_R \gamma_\mu e_R)$	${\cal O}_{eu}=(ar e_R\gamma^\mu e_R)(ar u_R\gamma_\mu u_R)$
$\mathcal{O}_{ld} = (ar{l}_L \gamma^\mu l_L) (ar{d}_R \gamma_\mu d_R)$	$\mathcal{O}_{ud}^{(1)}=(ar{u}_R\gamma^\mu u_R)(ar{d}_R\gamma_\mu d_R)$
$\mathcal{O}_{lu} = (\bar{l}_L \gamma^\mu l_L) (\bar{u}_R \gamma_\mu u_R)$	$\mathcal{O}_{ud}^{(8)} = (ar{u}_R \lambda^a \gamma^\mu u_R) (ar{d}_R \lambda^a \gamma_\mu d_R)$
$\mathcal{O}_{qe} = (ar{q}_L \gamma^\mu q_L) (ar{e}_R \gamma_\mu e_R)$	${\cal O}^{(1)}_{qd}=(ar q_L\gamma^\mu q_L)(ar d_R\gamma_\mu d_R)$
$\mathcal{O}_{lq}^{(3)} = (ar{l}_L au^a \gamma^\mu l_L) (ar{q}_L au^a \gamma_\mu q_L)$	${\cal O}^{(8)}_{qd} = (ar q_L \lambda^a \gamma^\mu q_L) (ar d_R \lambda^a \gamma_\mu d_R)$
-	$\mathcal{O}_{qu}^{(1)}=(ar{q}_L\gamma^\mu q_L)(ar{u}_R\gamma_\mu u_R)$
	${\cal O}^{(8)}_{qu} = (ar q_L \lambda^a \gamma^\mu q_L) (ar u_R \lambda^a \gamma_\mu u_R)$
$\mathcal{O}_{ledq} = (ar{l}_L e_R)(ar{d}_R q_L) + ext{H.c.}$	$\mathcal{O}_{duq} = \epsilon^{lphaeta\gamma} \epsilon_{jk} ((d^{lpha}_R)^T \mathbf{C} u^{eta}_R) ((q^{\gamma}_{Lj})^T$
$\mathcal{O}_{quqd}^{(1)} = (ar{q}_L u_R) \cdot (ar{q}_L d_R) + ext{H.c.}$	$\mathcal{O}_{qqu} = \epsilon^{lphaeta\gamma}\epsilon_{jk}((q^{lpha}_{Lj})^T\mathbf{C}q^{eta}_{Lk})((u^{\gamma}_R)$
$\mathcal{O}^{(8)}_{quqd} = (ar{q}_L \lambda^a u_R) \cdot (ar{q}_L \lambda^a d_R) + ext{H.c.}$	$\mathcal{O}_{qqq} = \epsilon^{lphaeta\gamma}\epsilon_{jn}\epsilon_{km}((q^{lpha}_{Lj})^T\mathbf{C}q^{eta}_{Lk})(($
$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L e_R) \cdot (\bar{q}_L u_R) + \mathrm{H.c.}$	$\mathcal{O}_{duu} = \epsilon^{lphaeta\gamma} ((d^{lpha}_R)^T \mathbf{C} u^{eta}_R) ((u^{\gamma}_R)^T \mathbf{C} e$
$\mathcal{O}_{leau}^{(3)} = (\bar{l}_L \sigma^{\mu\nu} e_R) \cdot (\bar{q}_L \sigma_{\mu\nu} u_R) + \mathrm{H.c.}$	

 $\frac{1}{\psi^4}$

Matches Hilbert series counting J. High Energy Phys. 09 035 (2019)

	_						
Model	U	d e	$l_L e_R q_L$	$u_R d_R$	$\Phi_1 \Phi_2$		
Type-I Type-II Type-X (Lepton speci	Φ_2 Φ_2	$\Phi_2 \Phi_2$ $\Phi_1 \Phi_1$ $\Phi_2 \Phi_1$	· + + + + - +	+ + -	- + - +		
Type-X (Lepton-speci Type-Y (Flipped)	Φ_2	$\Phi_2 \Phi_1 \Phi_2 \Phi_1 \Phi_2$	+ + +	+ + 	- +		
1 + H.c. = 62)					Type-II (24 -	- H.c. = 48)	
$\mathcal{L}_{L}d_{R}\Phi_{1}(\Phi_{2}^{\dagger}\Phi_{1}) \qquad \qquad \mathcal{O}_{u\Phi_{1}}^{(21)} = \bar{q}_{L}u_{R}$ $\mathcal{L}_{L}d_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{2}) \qquad \qquad \mathcal{O}_{u\Phi_{1}}^{(12)} = \bar{q}_{L}u_{R}$ $\mathcal{L}_{L}d_{R}\Phi_{2}(\Phi_{2}^{\dagger}\Phi_{2}) \qquad \qquad \mathcal{O}_{u\Phi_{2}}^{(22)} = \bar{q}_{L}u_{R}$ $\mathcal{L}_{L}d_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{1}) \qquad \qquad \mathcal{O}_{u\Phi_{2}}^{(11)} = \bar{q}_{L}u_{R}$	$\cdot \Phi_1^\dagger(\Phi_2^\dagger \Phi_1) \ \cdot \Phi_1^\dagger(\Phi_1^\dagger \Phi_2) \ \cdot \Phi_2^\dagger(\Phi_2^\dagger \Phi_2) \ \cdot \Phi_2^\dagger(\Phi_1^\dagger \Phi_1) \ \cdot \Phi_2^\dagger(\Phi_1^\dagger \Phi_1)$	$\psi^2 \phi^3$	$egin{aligned} \mathcal{O}_{l\Phi_{1}}^{(11)} &= ar{l}_{L}e_{R} \ \mathcal{O}_{l\Phi_{1}}^{(22)} &= ar{l}_{L}e_{R} \ \mathcal{O}_{l\Phi_{2}}^{(21)} &= ar{l}_{L}e_{R} \ \mathcal{O}_{l\Phi_{2}}^{(21)} &= ar{l}_{L}e_{R} \end{aligned}$	$egin{aligned} \Phi_1(\Phi_1^\dagger\Phi_1) \ \Phi_1(\Phi_2^\dagger\Phi_2) \ \Phi_2(\Phi_2^\dagger\Phi_1) \ \Phi_2(\Phi_1^\dagger\Phi_2) \end{aligned}$	$egin{aligned} \mathcal{O}_{d\Phi_{1}}^{(11)} &= ar{q}_{L}d, \ \mathcal{O}_{d\Phi_{1}}^{(22)} &= ar{q}_{L}d, \ \mathcal{O}_{d\Phi_{2}}^{(21)} &= ar{q}_{L}d, \ \mathcal{O}_{d\Phi_{2}}^{(21)} &= ar{q}_{L}d, \ \mathcal{O}_{d\Phi_{2}}^{(12)} &= ar{q}_{L}d, \end{aligned}$	${}_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{1})$ ${}_{R}\Phi_{1}(\Phi_{2}^{\dagger}\Phi_{2})$ ${}_{R}\Phi_{2}(\Phi_{2}^{\dagger}\Phi_{1})$ ${}_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{2})$	$\mathcal{O}_{u\Phi_1}^{(21)} = \bar{q}_L u_R \cdot \Phi_1^{\dagger}(\Phi_2^{\dagger}\Phi_1)$ $\mathcal{O}_{u\Phi_1}^{(12)} = \bar{q}_L u_R \cdot \Phi_1^{\dagger}(\Phi_1^{\dagger}\Phi_2)$ $\mathcal{O}_{u\Phi_2}^{(22)} = \bar{q}_L u_R \cdot \Phi_2^{\dagger}(\Phi_2^{\dagger}\Phi_2)$ $\mathcal{O}_{u\Phi_2}^{(11)} = \bar{q}_L u_R \cdot \Phi_2^{\dagger}(\Phi_1^{\dagger}\Phi_1)$
$ar{q}_L \sigma^{\mu u} d_R \Phi_2 B_{\mu u} \qquad \mathcal{O}_{uB\Phi_2} = ar{q}_L \sigma^{\mu u} d_R au^a \Phi_2 W^a_{\mu u} \qquad \mathcal{O}_{uW\Phi_2} = ar{q}_L \sigma^{\mu u} d_R au^a d_R \Phi_2 G^a_{\mu u} \qquad \mathcal{O}_{uG\Phi_2} = ar{q}_L \sigma^{\mu u}$	${}^{\mu\nu}u_R\cdot\Phi_2^{\dagger}B_{\mu\nu}$ ${}^{\mu}u_R au^a\cdot\Phi_2^{\dagger}W^a_{\mu\nu}$ ${}^{\mu}\lambda^a u_R\cdot\Phi_2^{\dagger}G^a_{\mu\nu}$	$\psi^2 X \phi$	$egin{aligned} \mathcal{O}_{lB\Phi_1} &= ar{l}_L \sigma^\mu \ \mathcal{O}_{lW\Phi_1} &= ar{l}_L \sigma^{\mu u} \end{aligned}$	$^{\mu u}e_R\Phi_1B_{\mu u}$ $^{\prime}e_R au^a\Phi_1W^a_{\mu u}$	$egin{aligned} \mathcal{O}_{dB\Phi_1} &= ar{q}_L \sigma_L \ \mathcal{O}_{dW\Phi_1} &= ar{q}_L \sigma_L \ \mathcal{O}_{dG\Phi_1} &= ar{q}_L \sigma_L \ \end{aligned}$	$\sigma^{\mu u} d_R \Phi_1 B_{\mu u} \ a^{\mu u} d_R \tau^a \Phi_1 W^a_{\mu u} \ a^{\mu u} \lambda^a d_R \Phi_1 G^a_{\mu u}$	$egin{aligned} \mathcal{O}_{uB\Phi_2} &= ar{q}_L \sigma^{\mu u} u_R \cdot \Phi_2^\dagger B_{\mu u} \ \mathcal{O}_{uW\Phi_2} &= ar{q}_L \sigma^{\mu u} u_R au^a \cdot \Phi_2^\dagger W^a_\mu \ \mathcal{O}_{uG\Phi_2} &= ar{q}_L \sigma^{\mu u} \lambda^a u_R \cdot \Phi_2^\dagger G^a_\mu \end{aligned}$
$\mathcal{O}^{(22)}_{\Phi ud} = (\Phi_2 \cdot i D_\mu \Phi_2)($	$\bar{u}_R \gamma^\mu d_R)$	$\psi^2 \phi^2 D$	$\mathcal{O}^{(21)}_{\Phi u u}$	$\dot{D}_{d} = (\Phi_{2}i \cdot \overleftrightarrow{D}_{u}\Phi)$	$(\bar{u}_R \gamma^\mu d_R)$		
$\mathcal{O}_{duq} = \epsilon^{lphaeta\gamma}\epsilon_{jk}((d_R^{lpha})^T\mathbf{C}u_R^{eta})$ $\mathcal{O}_{qqu} = \epsilon^{lphaeta\gamma}\epsilon_{jk}((q_{Lj}^{lpha})^T\mathbf{C}q_{Lk}^{eta})$ $\mathcal{O}_{aaa} = \epsilon^{lphaeta\gamma}\epsilon_{in}((a_{Lj}^{lpha})^T\mathbf{C}a_{Lk}^{eta})$	$((q_{Lj}^{\gamma})^{T} \mathbf{C} l_{Lk})$ $)((u_{R}^{\gamma})^{T} \mathbf{C} e_{R})$ $\cdot ((q_{L}^{\gamma})^{T} \mathbf{C} l_{Lr})$	$\frac{1}{\psi^4}$	<i>Ψ</i> ιά ($\mathcal{D}_{ledq} = (\bar{l}_L e_R)($	$(\bar{d}_R q_L)$	$\mathcal{O}_{qqq} = \mathcal{O}_{duu}$	$ \overline{\epsilon^{\alpha\beta\gamma}\epsilon_{jn}((q_{Lj}^{\alpha})^{T}\mathbf{C}q_{L}^{\beta})\cdot((q_{L}^{\gamma})^{T}\mathbf{C}l_{Ln}} = \epsilon^{\alpha\beta\gamma}((d_{R}^{\alpha})^{T}\mathbf{C}u_{R}^{\beta})((u_{R}^{\gamma})^{T}\mathbf{C}e_{R}) $
$\mathcal{O}_{duu} = \epsilon^{\alpha\beta\gamma} ((d_R^{\alpha})^T \mathbf{C} u_R^{\beta}) ($	$(u_R^{\gamma})^T \mathbf{C} e_R)$						

		Model	U	d e	$l_L e_R$	$q_L u$	$_R d_R$	Φ_1	$\overline{\Phi_2}$	
		Type-I Type-II Type-X (Le Type-Y (Fl	$\begin{array}{c} \Phi_2 \\ \Phi_2 \\ epton-specific) \\ \Phi_2 \\ ipped) \\ \end{array}$	$ \begin{array}{cccc} \Phi_2 & \Phi_2 \\ \Phi_1 & \Phi_1 \\ \Phi_2 & \Phi_2 \\ \Phi_1 & \Phi_2 \end{array} $	2 + + 1 + - 1 + - 2 + +	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ \end{array}$	- + 			
		Type-I (31 + H.c. = 62)		:				 T	vpe-II $(24 + H.c. = 48)$	
$\overline{\psi^2 \phi^3}$	$\mathcal{O}_{l\Phi_1}^{(21)} = \bar{l}_L e_R \Phi_1(\Phi_2^{\dagger} \Phi_1)$ $\mathcal{O}_{l\Phi_1}^{(12)} = \bar{l}_L e_R \Phi_1(\Phi_1^{\dagger} \Phi_2)$ $\mathcal{O}_{l\Phi_2}^{(22)} = \bar{l}_L e_R \Phi_2(\Phi_2^{\dagger} \Phi_2)$ $\mathcal{O}_{l\Phi_2}^{(11)} = \bar{l}_L e_R \Phi_2(\Phi_1^{\dagger} \Phi_1)$	$\mathcal{O}_{d\Phi_{1}}^{(21)} = \bar{q}_{L}d_{R}\Phi_{1}(\Phi_{2}^{\dagger}\Phi_{1})$ $\mathcal{O}_{d\Phi_{1}}^{(12)} = \bar{q}_{L}d_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{2})$ $\mathcal{O}_{d\Phi_{2}}^{(22)} = \bar{q}_{L}d_{R}\Phi_{2}(\Phi_{2}^{\dagger}\Phi_{2})$ $\mathcal{O}_{d\Phi_{2}}^{(11)} = \bar{q}_{L}d_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{1})$	$\mathcal{O}_{u\Phi_1}^{(21)} = \bar{q}_L u_R \cdot \Phi_1^{\dagger}(\Phi_2^{\dagger}\Phi_1)$ $\mathcal{O}_{u\Phi_1}^{(12)} = \bar{q}_L u_R \cdot \Phi_1^{\dagger}(\Phi_1^{\dagger}\Phi_2)$ $\mathcal{O}_{u\Phi_2}^{(22)} = \bar{q}_L u_R \cdot \Phi_2^{\dagger}(\Phi_2^{\dagger}\Phi_2)$ $\mathcal{O}_{u\Phi_2}^{(11)} = \bar{q}_L u_R \cdot \Phi_2^{\dagger}(\Phi_1^{\dagger}\Phi_1)$	$\psi^2 \phi^3$	$\mathcal{O}_{l\Phi_{1}}^{(11)} =$ $\mathcal{O}_{l\Phi_{1}}^{(22)} =$ $\mathcal{O}_{l\Phi_{2}}^{(21)} =$ $\mathcal{O}_{l\Phi_{2}}^{(12)} =$	$= \overline{l}_L e_R \Phi_1(\Phi)$ $= \overline{l}_L e_R \Phi_1(\Phi)$ $= \overline{l}_L e_R \Phi_2(\Phi)$ $= \overline{l}_L e_R \Phi_2(\Phi)$	$(\hat{P}_1^{\dagger} \Phi_1)$ $(\hat{P}_2^{\dagger} \Phi_2)$ $(\hat{P}_2^{\dagger} \Phi_1)$ $(\hat{P}_1^{\dagger} \Phi_2)$	C C C C		$egin{aligned} \mathcal{O}_{u\Phi_{1}}^{(21)} &= ar{q}_{L} u_{R} \ \mathcal{O}_{u\Phi_{1}}^{(12)} &= ar{q}_{L} u_{R} \ \mathcal{O}_{u\Phi_{2}}^{(22)} &= ar{q}_{L} u_{R} \ \mathcal{O}_{u\Phi_{2}}^{(21)} &= ar{q}_{L} u_{R} \ \mathcal{O}_{u\Phi_{2}}^{(11)} &= ar{q}_{L} u_{R} \end{aligned}$
$\psi^2 X \phi$	$\mathcal{O}_{lB\Phi_2} = l_L \sigma^{\mu u} e_R \Phi_2 B_{\mu u}$ $\mathcal{O}_{lW\Phi_2} = \overline{l}_L \sigma^{\mu u} e_R \tau^a \Phi_2 W^a_{\mu u}$ $\mathcal{O}_{R} \tau^a \Phi_2 W^a_{\mu u}$	$egin{aligned} \mathcal{O}_{dB\Phi_2} &= ar{q}_L \sigma^{\mu u} d_R \Phi_2 B_{\mu u} \ \mathcal{O}_{dW\Phi_2} &= ar{q}_L \sigma^{\mu u} d_R au^a \Phi_2 W^a_{\mu u} \ \mathcal{O}_{dG\Phi_2} &= ar{q}_L \sigma^{\mu u} \lambda^a d_R \Phi_2 G^a_{\mu u} \end{aligned}$	$egin{aligned} \mathcal{O}_{uB\Phi_2} &= ar{q}_L \sigma^{\mu u} u_R \cdot \Phi_2^\dagger B_{\mu u} \ \mathcal{O}_{uW\Phi_2} &= ar{q}_L \sigma^{\mu u} u_R au^a \cdot \Phi_2^\dagger W^a_{\mu u} \ \mathcal{O}_{uG\Phi_2} &= ar{q}_L \sigma^{\mu u} \lambda^a u_R \cdot \Phi_2^\dagger G^a_{\mu u} \end{aligned}$	$\psi^2 X \phi$	$\mathcal{O}_{lB\Phi_1}=\mathcal{O}_{lW\Phi_1}$	$=ar{l}_L\sigma^{\mu u}e_R\Phi^{\mu u}e_R au^a$	$\Phi_1 B_{\mu u} \Phi_1 W^a_{\mu u}$	\mathcal{O}_d \mathcal{O}_d	$egin{split} \mathcal{D}_{dB\Phi_1} &= ar{q}_L \sigma^{\mu u} d_R \Phi_1 B_{\mu u} \ \mathcal{D}_{W\Phi_1} &= ar{q}_L \sigma^{\mu u} d_R au^a \Phi_1 W^a_{\mu u} \ \mathcal{D}_{dG\Phi_1} &= ar{q}_L \sigma^{\mu u} \lambda^a d_R \Phi_1 G^a_{\mu u} \end{split}$	$egin{aligned} \mathcal{O}_{uB\Phi_2} &= ar{q}_L \sigma^\mu \ \mathcal{O}_{uW\Phi_2} &= ar{q}_L \sigma^{\mu u} \ \mathcal{O}_{uG\Phi_2} &= ar{q}_L \sigma^{\mu u} \end{aligned}$
$\frac{\psi^2 \phi^2 D}{4}$	$\mathcal{O}_{\Phi ud}^{(11)} = (\Phi_1 \cdot iD_\mu \Phi_1)(\bar{u}_R)$	$\mathcal{O}_{\Phi u}^{\mu} d_R) = \mathcal{O}_{\Phi u}^{(22)}$	$\int_{d}^{0} = (\Phi_2 \cdot iD_{\mu}\Phi_2)(\bar{u}_R\gamma^{\mu}d_R)$	$\psi^2 \phi^2 D$		$\mathcal{O}_{\Phi ud}^{(21)} = (0$	$\Phi_2 i \cdot \overset{\leftrightarrow}{D}_{\mu} \Phi$	$(\bar{u}_R \gamma^\mu)$	d_R)	
ψ^*	$\mathcal{O}_{ledq} = (l_L e_R)(d_R q_L)$ $\mathcal{O}_{quqd}^{(1)} = (\bar{q}_L u_R) \cdot (\bar{q}_L d_R)$ $\mathcal{O}_{quqd}^{(8)} = (\bar{q}_L \lambda^a u_R) \cdot (\bar{q}_L \lambda^a)$	$ \begin{array}{ll} \mathcal{O}_{duq} = \epsilon \\ \mathcal{O}_{qqu} = \epsilon \\ \mathcal{O}_{qqu} = \epsilon \\ \mathcal{O}_{aaa} = \epsilon^{a} \end{array} $	$\varepsilon^{\alpha\beta\gamma} \epsilon_{jk} ((d_R^{\alpha})^T \mathbf{C} u_R^{\beta}) ((q_{Lj}^{\gamma})^T \mathbf{C} l_{Lk})$ $\varepsilon^{\alpha\beta\gamma} \epsilon_{jk} ((q_{Lj}^{\alpha})^T \mathbf{C} q_{Lk}^{\beta}) ((u_R^{\gamma})^T \mathbf{C} e_R)$ $\varepsilon^{\alpha\beta\gamma} \epsilon_{in} ((q_{Lj}^{\alpha})^T \mathbf{C} q_L^{\beta}) \cdot ((q_L^{\gamma})^T \mathbf{C} l_{Ln})$	ψ^4		\mathcal{O}_{ledq}	$=(\bar{l}_L e_R)$	$(\bar{d}_R q_L)$	$\mathcal{O}_{qqq} = \mathcal{O}_{duu}$	$arepsilon^{lphaeta\gamma} \epsilon_{jn} ((q^{lpha}_{Lj})^T \mathbf{C} q^{eta}_L) \cdot = \epsilon^{lphaeta\gamma} ((d^{lpha}_R)^T \mathbf{C} u^{eta}_R) ((d^{lpha}_R)^T $
	$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L e_R) \cdot (\bar{q}_L u_R)$ $\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L \sigma^{\mu\nu} e_R) \cdot (\bar{q}_L \sigma_{\mu\nu} e_R)$	$\mathcal{O}_{duu} = \mathcal{O}_{duu}$	$= \epsilon^{\alpha\beta\gamma} ((d_R^{\alpha})^T \mathbf{C} u_R^{\beta}) ((u_R^{\gamma})^T \mathbf{C} e_R)$							

Types of 2HDM EFTs

• Avoid flavor changing neutral currents with fermions by imposing Z_2 symmetry on the fields:

Types

	** * *				•• • •		
		Type-X $(26 + H.c. = 52)$				Type-Y (25 + H.c. =	= 50)
$\psi^2 \phi^3$	$egin{aligned} \mathcal{O}_{l\Phi_{1}}^{(11)} &= ar{l}_{L}e_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{1}) \ \mathcal{O}_{l\Phi_{1}}^{(22)} &= ar{l}_{L}e_{R}\Phi_{1}(\Phi_{2}^{\dagger}\Phi_{2}) \ \mathcal{O}_{l\Phi_{2}}^{(21)} &= ar{l}_{L}e_{R}\Phi_{2}(\Phi_{2}^{\dagger}\Phi_{1}) \ \mathcal{O}_{l\Phi_{2}}^{(12)} &= ar{l}_{L}e_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{2}) \end{aligned}$	$egin{aligned} \mathcal{O}_{d\Phi_{1}}^{(21)} &= ar{q}_{L}d_{R}\Phi_{1}(\Phi_{2}^{\dagger}\Phi_{1}) \ \mathcal{O}_{d\Phi_{1}}^{(12)} &= ar{q}_{L}d_{R}\Phi_{1}(\Phi_{1}^{\dagger}\Phi_{2}) \ \mathcal{O}_{d\Phi_{2}}^{(22)} &= ar{q}_{L}d_{R}\Phi_{2}(\Phi_{2}^{\dagger}\Phi_{2}) \ \mathcal{O}_{d\Phi_{2}}^{(11)} &= ar{q}_{L}d_{R}\Phi_{2}(\Phi_{1}^{\dagger}\Phi_{1}) \end{aligned}$	$egin{aligned} \mathcal{O}_{u\Phi_1}^{(21)} &= ar{q}_L u_R \cdot \Phi_1^\dagger(\Phi_2^\dagger \Phi_1) \ \mathcal{O}_{u\Phi_1}^{(12)} &= ar{q}_L u_R \cdot \Phi_1^\dagger(\Phi_1^\dagger \Phi_2) \ \mathcal{O}_{u\Phi_2}^{(22)} &= ar{q}_L u_R \cdot \Phi_2^\dagger(\Phi_2^\dagger \Phi_2) \ \mathcal{O}_{u\Phi_2}^{(11)} &= ar{q}_L u_R \cdot \Phi_2^\dagger(\Phi_1^\dagger \Phi_1) \end{aligned}$	$\overline{\psi^2 \phi^3}$	$egin{aligned} \mathcal{O}_{l\Phi_{1}}^{(21)} &= ar{l}_{L} e_{R} \Phi_{1}(\Phi_{2}^{\dagger} \Phi_{1}) \ \mathcal{O}_{l\Phi_{1}}^{(12)} &= ar{l}_{L} e_{R} \Phi_{1}(\Phi_{1}^{\dagger} \Phi_{2}) \ \mathcal{O}_{l\Phi_{2}}^{(22)} &= ar{l}_{L} e_{R} \Phi_{2}(\Phi_{2}^{\dagger} \Phi_{2}) \ \mathcal{O}_{l\Phi_{2}}^{(11)} &= ar{l}_{L} e_{R} \Phi_{2}(\Phi_{1}^{\dagger} \Phi_{1}) \end{aligned}$	$egin{aligned} \mathcal{O}_{d\Phi_1}^{(11)} &= ar{q}_L d_R \Phi_1 (\Phi_1^{\dagger}) \ \mathcal{O}_{d\Phi_1}^{(22)} &= ar{q}_L d_R \Phi_1 (\Phi_2^{\dagger}) \ \mathcal{O}_{d\Phi_2}^{(21)} &= ar{q}_L d_R \Phi_2 (\Phi_2^{\dagger}) \ \mathcal{O}_{d\Phi_2}^{(12)} &= ar{q}_L d_R \Phi_2 (\Phi_2^{\dagger}) \ \mathcal{O}_{d\Phi_2}^{(12)} &= ar{q}_L d_R \Phi_2 (\Phi_1^{\dagger}) \end{aligned}$	$ \begin{array}{ll} \Phi_1) & \mathcal{O}_{u\Phi_1}^{(21)} = \bar{q}_L u_R \cdot \\ \Phi_2) & \mathcal{O}_{u\Phi_1}^{(12)} = \bar{q}_L u_R \cdot \\ \Phi_1) & \mathcal{O}_{u\Phi_2}^{(22)} = \bar{q}_L u_R \cdot \\ \Phi_2) & \mathcal{O}_{u\Phi_2}^{(11)} = \bar{q}_L u_R \cdot \\ \end{array} $
$\psi^2 X \phi$	$egin{split} \mathcal{O}_{lB\Phi_1} &= ar{l}_L \sigma^{\mu u} e_R \Phi_1 B_{\mu u} \ \mathcal{O}_{lW\Phi_1} &= ar{l}_L \sigma^{\mu u} e_R au^a \Phi_1 W^a_{\mu u} \end{split}$	$egin{aligned} \mathcal{O}_{dB\Phi_2} &= ar{q}_L \sigma^{\mu u} d_R \Phi_2 B_{\mu u} \ \mathcal{O}_{dW\Phi_2} &= ar{q}_L \sigma^{\mu u} d_R au^a \Phi_2 W^a_{\mu u} \ \mathcal{O}_{dG\Phi_2} &= ar{q}_L \sigma^{\mu u} \lambda^a d_R \Phi_2 G^a_{\mu u} \end{aligned}$	$egin{aligned} \mathcal{O}_{uB\Phi_2} &= ar{q}_L \sigma^{\mu u} u_R \cdot \Phi_2^\dagger B_{\mu u} \ \mathcal{O}_{uW\Phi_2} &= ar{q}_L \sigma^{\mu u} u_R au^a \cdot \Phi_2^\dagger W^a_{\mu u} \ \mathcal{O}_{uG\Phi_2} &= ar{q}_L \sigma^{\mu u} \lambda^a u_R \cdot \Phi_2^\dagger G^a_{\mu u} \end{aligned}$	$\psi^2 X \phi$	$egin{split} \mathcal{O}_{lB\Phi_2} &= ar{l}_L \sigma^{\mu u} e_R \Phi_2 B_{\mu u} \ \mathcal{O}_{lW\Phi_2} &= ar{l}_L \sigma^{\mu u} e_R au^a \Phi_2 W^a_{\mu u} \end{split}$	$egin{aligned} \mathcal{O}_{dB\Phi_1} &= ar{q}_L \sigma^{\mu u} d_R \Phi_1 \ \mathcal{O}_{dW\Phi_1} &= ar{q}_L \sigma^{\mu u} d_R au^a \Phi \ \mathcal{O}_{dG\Phi_1} &= ar{q}_L \sigma^{\mu u} \lambda^a d_R \Phi \end{aligned}$	$\mathcal{O}_{uB\Phi_2} = \bar{q}_L \sigma^{\mu\nu}$ $\mathcal{O}_1 W^a_{\mu\nu}$ $\mathcal{O}_{uW\Phi_2} = \bar{q}_L \sigma^{\mu\nu} u$ $\mathcal{O}_1 G^a_{\mu\nu}$ $\mathcal{O}_{uG\Phi_2} = \bar{q}_L \sigma^{\mu\nu} \lambda$
$\psi^2 \phi^2 D$	$\mathcal{O}_{\Phi ud}^{(11)} = (\Phi_1 \cdot i D_\mu \Phi_2)$	$(\bar{u}_R \gamma^\mu d_R) = \mathcal{O}_{\Phi}^{(2)}$	$D_{ud}^{(22)} = (\Phi_2 \cdot iD_\mu \Phi_2)(\bar{u}_R \gamma^\mu d_R)$	$\psi^2 \phi^2 D$	$\mathcal{O}_{\Phi ud}^{(21)} = (\Phi_2 i \cdot \stackrel{\leftrightarrow}{D}_\mu \Phi_2)$	$_{1})(\bar{u}_{R}\gamma^{\mu}d_{R})$	
ψ^4	$\mathcal{O}_{quqd}^{(1)} = (\bar{q}_L u_R) + \mathcal{O}_{quqd}^{(8)} = (\bar{q}_L \lambda^a u_R) + \mathcal{O}_{quqd}^{(8)} = $	$egin{aligned} & & \mathcal{O}_{duq} = \ & & & \mathcal{O}_{duq} = \ & & & & \mathcal{O}_{qqq} = \ & & & \mathcal{O}_{qqq} = \ & & & & & & & & & & & & & & & & & &$	$\epsilon^{\alpha\beta\gamma}\epsilon_{jk}((d_R^{\alpha})^T\mathbf{C}u_R^{\beta})((q_{Lj}^{\gamma})^T\mathbf{C}l_{Lk})\\\epsilon^{\alpha\beta\gamma}\epsilon_{jn}((q_{Lj}^{\alpha})^T\mathbf{C}q_L^{\beta})\cdot((q_L^{\gamma})^T\mathbf{C}l_{Ln})$	ψ^4	$\mathcal{O}_{lequ}^{(1)} = (ar{l}_L e_R) \cdot \ \mathcal{O}_{lequ}^{(3)} = (ar{l}_L \sigma^{\mu u} e_R) \cdot$	$(\bar{q}_L u_R) (\bar{q}_L \sigma_{\mu\nu} u_R)$	$\mathcal{O}_{qqu} = \epsilon^{lphaeta\gamma} \epsilon_{jk} ((q_{Lj}^{lpha})^T \mathbf{C} q_{Lk}^{eta})$ $\mathcal{O}_{qqq} = \epsilon^{lphaeta\gamma} \epsilon_{jn} ((q_{Lj}^{lpha})^T \mathbf{C} q_{L}^{eta}) \cdot$

Notice that ψ^4 operators aren't affected by the new scalars, but are affected if a Z_2 symmetry is imposed

J. High Energy predicts half of the $\psi^2 \phi^3$ operators and in each type of 2HDM since they impose their Z_2 symmetry by restricting mixed pairs of $\Phi_{1,2}^{\dagger} \Phi_{2,1}$

of 2HDM EFTs

			$X^2 \phi^2$	${\cal O}^{(11)}_{\Phi G}=(\Phi^{\dagger}_{1}\Phi_{1})G^{a}_{\mu u}G^{a\mu u}$	$\mathcal{O}^{(11)}_{oldsymbol{\Phi} ilde{G}} = (oldsymbol{\Phi}^\dagger_1 oldsymbol{\Phi}_1) ilde{G}^a_{\mu u} G^{a\mu u}$
$\phi^4 D^2$	$\mathcal{O}_{\Phi\partial^2}^{(11)(11)} = \partial_\mu (\Phi_1^{\dagger} \Phi_1) \partial^\mu (\Phi_1^{\dagger} \Phi_1)$ $\mathcal{O}_{\Phi\partial^2}^{(22)(22)} = \partial_\mu (\Phi_2^{\dagger} \Phi_2) \partial^\mu (\Phi_2^{\dagger} \Phi_2)$ $\mathcal{O}_{\Phi\partial^2}^{(11)(22)} = \partial_\mu (\Phi_1^{\dagger} \Phi_1) \partial^\mu (\Phi_2^{\dagger} \Phi_2)$ $\mathcal{O}_{\Phi D}^{(11)(11)} = (\Phi_1^{\dagger} \overleftrightarrow{D}_\mu \Phi_1) (\Phi_1^{\dagger} \overleftrightarrow{D}^\mu \Phi_1)$ $\mathcal{O}_{\Phi D}^{(22)(22)} = (\Phi_2^{\dagger} \overleftrightarrow{D}_\mu \Phi_2) (\Phi_2^{\dagger} \overleftrightarrow{D}^\mu \Phi_2)$ $\mathcal{O}_{\Phi D}^{(11)(22)} = (\Phi_1^{\dagger} \overleftrightarrow{D}_\mu \Phi_1) (\Phi_2^{\dagger} \overleftrightarrow{D}^\mu \Phi_2)$	$\begin{split} \mathcal{O}_{\Phi\partial^2}^{(21)(12)} &= \partial_\mu (\Phi_2^{\dagger} \Phi_1) \partial^\mu (\Phi_1^{\dagger} \Phi_2) \\ \mathcal{O}_{\Phi\partial^2}^{(21)(21)} &= \partial_\mu (\Phi_2^{\dagger} \Phi_1) \partial^\mu (\Phi_2^{\dagger} \Phi_1) + \text{H.c.} \\ \mathcal{O}_{\Phi D}^{(21)(12)} &= (\Phi_2^{\dagger} \overleftrightarrow{D}_\mu \Phi_1) (\Phi_1^{\dagger} \overleftrightarrow{D}^\mu \Phi_2) \\ \mathcal{O}_{\Phi D}^{(21)(21)} &= (\Phi_2^{\dagger} \overleftrightarrow{D}_\mu \Phi_1) (\Phi_2^{\dagger} \overleftrightarrow{D}^\mu \Phi_1) + \text{H.c.} \end{split}$		$\begin{aligned} \mathcal{O}_{\Phi G}^{(22)} &= (\Phi_2^{\dagger} \Phi_2) G_{\mu\nu}^a G^{a\mu\nu} \\ \mathcal{O}_{\Phi W}^{(11)} &= (\Phi_1^{\dagger} \Phi_1) W_{\mu\nu}^a W^{a\mu\nu} \\ \mathcal{O}_{\Phi W}^{(22)} &= (\Phi_2^{\dagger} \Phi_2) W_{\mu\nu}^a W^{a\mu\nu} \\ \mathcal{O}_{\Phi B}^{(11)} &= (\Phi_1^{\dagger} \Phi_1) B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{\Phi B}^{(22)} &= (\Phi_2^{\dagger} \Phi_2) B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{\Phi W B}^{(11)} &= (\Phi_1^{\dagger} \tau^a \Phi_1) W_{\mu\nu}^a B^{\mu\nu} \\ \mathcal{O}_{\Phi W B}^{(22)} &= (\Phi_2^{\dagger} \tau^a \Phi_2) W_{\mu\nu}^a B^{\mu\nu} \end{aligned}$	$\begin{aligned} \mathcal{O}_{\Phi \tilde{G}}^{(22)} &= (\Phi_2^{\dagger} \Phi_2) \tilde{G}_{\mu\nu}^a G^{a\mu\nu} \\ \mathcal{O}_{\Phi \tilde{W}}^{(11)} &= (\Phi_1^{\dagger} \Phi_1) \tilde{W}_{\mu\nu}^a W^{a\mu\nu} \\ \mathcal{O}_{\Phi \tilde{W}}^{(22)} &= (\Phi_2^{\dagger} \Phi_2) \tilde{W}_{\mu\nu}^a W^{a\mu\nu} \\ \mathcal{O}_{\Phi \tilde{B}}^{(11)} &= (\Phi_1^{\dagger} \Phi_1) \tilde{B}_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{\Phi \tilde{B}}^{(22)} &= (\Phi_2^{\dagger} \Phi_2) \tilde{B}_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{\Phi \tilde{W} B}^{(11)} &= (\Phi_1^{\dagger} \tau^a \Phi_1) \tilde{W}_{\mu\nu}^a \\ \mathcal{O}_{\Phi \tilde{W} B}^{(22)} &= (\Phi_2^{\dagger} \tau^a \Phi_2) \tilde{W}_{\mu\nu}^a \end{aligned}$
ϕ^6	$\mathcal{O}_{\Phi}^{(11)(11)(11)} = (\Phi_{1}^{\dagger}\Phi_{1})^{3}$ $\mathcal{O}_{\Phi}^{(22)(22)(22)} = (\Phi_{2}^{\dagger}\Phi_{2})^{3}$ $\mathcal{O}_{\Phi}^{(11)(11)(22)} = (\Phi_{1}^{\dagger}\Phi_{1})^{2}(\Phi_{2}^{\dagger}\Phi_{2})$ $\mathcal{O}_{\Phi}^{(11)(22)(22)} = (\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2})^{2}$	$\begin{aligned} \mathcal{O}_{\Phi}^{(11)(21)(21)} &= (\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{1})^{2} + \text{H.c.} \\ \mathcal{O}_{\Phi}^{(22)(21)(21)} &= (\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1})^{2} + \text{H.c.} \\ \mathcal{O}_{\Phi}^{(11)(21)(12)} &= (\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2}) \\ \mathcal{O}_{\Phi}^{(22)(21)(12)} &= (\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2}) \end{aligned}$	$\psi^2 \phi^2 D$	$\mathcal{O}_{\Phi e}^{(11)} = (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{e}_R \gamma^{\mu} e_R)$ $\mathcal{O}_{\Phi e}^{(22)} = (\Phi_2^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{e}_R \gamma^{\mu} e_R)$ $\mathcal{O}_{\Phi d}^{(11)} = (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{d}_R \gamma^{\mu} d_R)$ $\mathcal{O}_{\Phi d}^{(22)} = (\Phi_2^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{d}_R \gamma^{\mu} d_R)$ $\mathcal{O}_{\Phi u}^{(11)} = (\Phi_1^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_1) (\bar{u}_R \gamma^{\mu} u_R)$ $\mathcal{O}_{\Phi u}^{(22)} = (\Phi_2^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi_2) (\bar{u}_R \gamma^{\mu} u_R)$	$\begin{aligned} \mathcal{O}_{\Phi l}^{(11)[1]} &= (\Phi_{1}^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi_{1}) (\bar{l}, \\ \mathcal{O}_{\Phi l}^{(22)[1]} &= (\Phi_{2}^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi_{2}) (\bar{l}, \\ \mathcal{O}_{\Phi q}^{(11)[1]} &= (\Phi_{1}^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi_{1}) (\bar{q}, \\ \mathcal{O}_{\Phi q}^{(22)[1]} &= (\Phi_{2}^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi_{2}) (\bar{q}, \\ \mathcal{O}_{\Phi l}^{(11)[3]} &= (\Phi_{1}^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi_{1}) (\bar{l}, \\ \mathcal{O}_{\Phi l}^{(22)[3]} &= (\Phi_{2}^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi_{2}) (\bar{l}, \\ \mathcal{O}_{\Phi q}^{(11)[3]} &= (\Phi_{1}^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi_{1}) (\bar{q}, \\ \mathcal{O}_{\Phi q}^{(22)[3]} &= (\Phi_{2}^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi_{2}) (\bar{q}, \\ \end{aligned}$

This gives us a total of 76 operators common in all four types of 2HDMs

Types of 2HDM EFTs

lacksquare

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} cc \\ -s \end{pmatrix}$$

$$H_1 = \begin{pmatrix} G^+ \cos(\beta - \hat{\beta}^{\pm}) + H^+ \sin(\beta - \hat{\beta}^{\pm}) \\ v + \frac{1}{\sqrt{2}} (h\sin(\beta - \hat{\alpha}) + H\cos(\beta - \hat{\alpha}) + iG\cos(\beta - \hat{\beta}) + iA\sin(\beta - \hat{\beta})) \end{pmatrix}$$

In the tree-level 2HDM, $\beta = \hat{\beta} = \hat{\beta}^{\pm}$ but dim. 6 contributions break this

$$H_2 = \begin{pmatrix} -G^+ \sin(\beta - \hat{\beta}^{\pm}) + H^+ \cos(\beta - \hat{\beta}^{\pm}) \\ \frac{1}{\sqrt{2}} (h\cos(\beta - \hat{\alpha}) - H\sin(\beta - \hat{\alpha}) - iG\sin(\beta - \hat{\beta}) + iA\cos(\beta - \hat{\beta})) \end{pmatrix}$$

 $\beta - \hat{\beta} = \mathcal{O}(v^4 / \Lambda^2 m_A^2)$ for the *CP*-odd scalars $\beta - \hat{\beta}^{\pm} = \mathcal{O}(v^4 / \Lambda^2 m_{H^{\pm}}^2)$ for the charged sector

2HDM EFT in the Higgs Basis

We can always perform a rotation on the Higgs doublets: rotate by the vacuum angle β :

 $\frac{\cos\beta}{\sin\beta} \frac{\sin\beta}{\cos\beta} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$

This is called the **Higgs basis**

lacksquare

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} cc \\ -s \end{pmatrix}$$

$$H_{1} = \begin{pmatrix} G^{+}\cos(\beta - \hat{\beta}^{\pm}) + H^{+}\sin(\beta - \hat{\beta}^{\pm}) \\ v + \frac{1}{\sqrt{2}}(h\sin(\beta - \hat{\alpha}) + H\cos(\beta - \hat{\alpha}) + iG\cos(\beta - \hat{\beta}) + iA\sin(\beta - \hat{\beta})) \end{pmatrix} \rightarrow \begin{pmatrix} G^{+} \\ v + \frac{1}{\sqrt{2}}(h + iG) \end{pmatrix} + \mathcal{O}\left(\frac{v^{4}}{\Lambda^{2}M^{4}}\right)$$

In the tree-level 2HDM, $\beta = \hat{\beta} = \hat{\beta}^{\pm}$ but dim. 6 contributions break this

$$H_{2} = \begin{pmatrix} -G^{+} \sin(\beta - \hat{\beta}^{\pm}) + H^{+} \cos(\beta - \hat{\beta}^{\pm}) \\ \frac{1}{\sqrt{2}} (h\cos(\beta - \hat{\alpha}) - H\sin(\beta - \hat{\alpha}) - iG\sin(\beta - \hat{\beta}) + iA\cos(\beta - \hat{\beta})) \end{pmatrix} \rightarrow \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}} (-H + iA) \end{pmatrix} + \mathcal{O}\left(\frac{v^{4}}{\Lambda^{2}M^{4}}\right)$$

 $\beta - \hat{\beta} = \mathcal{O}(v^4 / \Lambda^2 m_A^2)$ for the *CP*-odd scalars $\beta - \hat{\beta}^{\pm} = \mathcal{O}(v^4 / \Lambda^2 m_{H^{\pm}}^2)$ for the charged sector

2HDM EFT in the Higgs Basis

We can always perform a rotation on the Higgs doublets: rotate by the vacuum angle β :

 $\left(\begin{array}{cc} \cos \beta & \sin \beta \\ \sin \beta & \cos \beta \end{array} \right) \left(\begin{array}{c} \Phi_1 \\ \Phi_2 \end{array} \right)$ This is called the **Higgs basis**

In the **alignment limit**: $\beta - \hat{\alpha} \rightarrow \pi/2$

SM fields are approx. decoupled from new scalars

ullet

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} cc \\ -s \end{pmatrix}$$

but dim. 6 contributions break this

$$-G^{+}\sin(\beta - \hat{\beta}^{\pm}) + H^{+}\cos(\beta - \hat{\beta}^{\pm})$$

$$H_{2} = \begin{pmatrix} -G^{+}\sin(\beta - \hat{\beta}) + H^{+}\cos(\beta - \hat{\beta}^{\pm}) \\ \frac{1}{\sqrt{2}}(h\cos(\beta - \hat{\alpha}) - H\sin(\beta - \hat{\alpha}) - iG\sin(\beta - \hat{\beta}) + iA\cos(\beta - \hat{\beta})) \end{pmatrix} \rightarrow \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}}(-H + iA) \\ \frac{1}{\sqrt{2}}(-H + iA) \end{pmatrix} + \mathcal{O}\left(\frac{v^{4}}{\Lambda^{2}M^{4}}\right)$$

$$v \lesssim M_{2}$$

2HDM EFT in the Higgs Basis

We can always perform a rotation on the Higgs doublets: rotate by the vacuum angle β :

 $\frac{\cos\beta}{\sin\beta} \frac{\sin\beta}{\cos\beta} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$ This is called the **Higgs basis**

The Higgs basis has the same number (228) of operators as in the standard basis, and all operators can be obtained by replacing $\Phi \to H$

2HDM EFT Higgs Basis Advantages

Let's suppose some theory generates the operator

Standard basis:

In the Higgs basis: 8 operators are present w/ combinations of $H_1(H_2)$:

Factors of $\cos\beta$ or $\sin\beta$ are to compare the proportionality between diagrams

 $\mathcal{O}_{\psi\Phi_1}^{(11)} = \overline{\psi}_L \psi_R \Phi_1 \left(\Phi_1^{\dagger} \Phi_1 \right)$

2HDM EFT Higgs Basis Advantages

Let's suppose some theory generates the operator

Standard basis:

In the Higgs basis: 8 operators are present w/ combinations of $H_1(H_2)$:

Factors of $\cos \beta$ or $\sin \beta$ are to compare the proportionality between diagrams

 $\mathcal{O}_{\psi\Phi_1}^{(11)} = \overline{\psi}_L \psi_R \Phi_1 \left(\Phi_1^{\dagger} \Phi_1 \right)$

(a) is the only operator which can contribute to the mass: $\overline{\psi}_L \psi_R C_{w\Phi_1}^{(11)} (v \cos \beta)^3$

(b-h) are operators which only contribute to scattering of at least 1 new Higgs scalar

2HDM EFT Higgs Basis Advantages

The process $\overline{\psi}\psi \rightarrow hhh$ is contained only in the first operator

The process $\overline{\psi}\psi \rightarrow HHH$ is contained in the last operator

(Also HHH, HAA, HHA, H^+H^-H , and H^+H^-A)

We can also learn something about scattering. Say I want to compare the cross section of $\overline{\psi}\psi \rightarrow hhh$ to $\overline{\psi}\psi \rightarrow HHH$

 $\mathcal{O}_{\psi\Phi_1}^{(11)} = \overline{\psi}_L \psi_R \Phi_1 \left(\Phi_1^{\dagger} \Phi_1 \right)$

$$\frac{\sigma(\overline{\psi}\psi \to HHH)}{\sigma(\overline{\psi}\psi \to hhh)} \propto \frac{|\sin^3 \beta C_{\psi\Phi_1}^{(11)}|^2}{|\cos^3 \beta C_{\psi\Phi_1}^{(11)}|^2} =$$

 $\tan\beta$ enhancements are a general feature of a 2HDM and are clear in the 2HDM EFT Higgs basis

Let's suppose we have a UV theory where new leptons couple to the Higgs doublets and muon in a type-II 2HDM:

	l_L	μ_R	Φ_1	Φ_2	$L_{L,R}$	$E_{L,R}$	
$SU(2)_L$	2	1	2	2	2	1	\mathcal{L} = -
$U(1)_Y$	$\frac{1}{2}$	-1	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{3}{2}$	-1	
Z_2	+	—	—	+	+	—	_

Vector-like lepton doublet L Vector-like lepton singlet E

Other Advantages: An Example UV-Completion

 $-y_{\mu}\overline{l}_{L}\mu_{R}\Phi_{1} - \lambda_{E}\overline{l}_{L}E_{R}\Phi_{1} - \lambda_{L}\overline{L}_{L}\mu_{R}\cdot\Phi_{1}^{\dagger} - \lambda\overline{L}_{L}\cdot E_{R}\Phi_{1}^{\dagger} - \overline{\lambda}\overline{E}_{L}L_{R}\cdot\Phi_{1}$ $-M_L \overline{L}_L L_R - M_E \overline{E}_L E_R - m_1^2 \Phi_1^{\dagger} \Phi_1 - m_2^2 \Phi_2^{\dagger} \Phi_2 + h \cdot c \cdot$

 $M_{LE} \gg v$

Let's see what happens if I close all doublets in $H_1^{\dagger}H_1$ $(H_2^{\dagger}H_2)$ invariant pairs (but leave one H_1 outside)

(h)

The external H_1 is needed so it doesn't vanish after EWSB

The external H_1 is needed so it doesn't vanish after EWSB

(a (f))

Dress diagram with B, W^a gauge fields:

dipole moments of the muon

the dipole operators

 $C_{lBH_1}\bar{l}_L\sigma^{\mu\nu}\mu_R H_1B_{\mu\nu}$ $\Delta a_{\mu} = -\left(\frac{4m_{\mu}v}{e}\right) \operatorname{Re}[C_{\mu\gamma}] \quad (\text{muon } g - 2) \qquad \qquad d_{\mu} = 2v \operatorname{Im}[C_{\mu\gamma}] \quad (\text{muon EDM})$

• We see that in this UV completion, generating the operator $C_{\mu\Phi_1}^{(11)}\bar{l}_L\mu_R\Phi_1\left(\Phi_1^{\dagger}\Phi_1\right)$ is directly correlated to

 $C_{\mu\gamma} = \cos\theta_W C_{lBH_1} - \sin\theta_W C_{lWH_1}$

Phys. Rev. Lett 129, 221801 (2022) Phys. Rev. D 107, 095043 (2023)

the dipole operators

 $C_{lBH_1}\bar{l}_L\sigma^{\mu\nu}\mu_R H_1 B_{\mu\nu}$ $\Delta a_{\mu} = -\left(\frac{4m_{\mu}v}{e}\right) \operatorname{Re}[C_{\mu\gamma}] \quad (\mathrm{muon} \ g - 2)$

Very different answers depending what the scale of H_2 is!

$$C_{\mu\gamma} = 5e\left(\frac{\lambda_L \lambda_E \bar{\lambda}}{64\pi^2 M_L M_E}\right) cc$$

$$C_{\mu\gamma} = e\left(\frac{\lambda_L \lambda_E \bar{\lambda}}{64\pi^2 M_L M_E}\right) \cos^3\beta \left(5 + \frac{17}{6} \tan^2\beta\right) + e\left(\frac{\lambda_L \lambda_E \lambda^*}{64\pi^2 M_L M_E}\right) \cos^3\beta \left(\frac{1}{6} \tan^2\beta\right)$$

We see that in this UV completion, generating the operator $C^{(11)}_{\mu\Phi_1} \bar{l}_L \mu_R \Phi_1 \left(\Phi_1^{\dagger} \Phi_1 \right)$ is directly correlated to

$$C_{lWH_1} \overline{l}_L \sigma^{\mu\nu} \mu_R \tau^a H_1 W^a_{\mu\nu}$$

$$C_{lBH_1} - \sin \theta_W C_{lWH_1}$$

$$d_\mu = 2\nu \, \text{Im}[C_{\mu\gamma}] \quad \text{(muon EDM)}$$

In this model, $C_{\mu\gamma}$ is

$$C_{\mu\Phi_1}^{(11)} = \left(\frac{\lambda_L \lambda_E \bar{\lambda}}{M_L M_E}\right)$$

$$\cos^3\beta \left(1 + \tan^2\beta\right) \qquad M_{L,E} \gg M_{1,2}$$

Much easier to obtain than the entire calculation in the mass eigenstate basis

$$M_{L,E} \sim M_2 \gg M_1$$

Phys. Rev. D 108, 055019 (2023)

Takeaways

- Higgs scalars
- lacksquareones for each type
- different
 - \bullet processes while ones with H_2 can only ever contribute to scattering
 - \bullet
 - In UV theories, connections between different observables can be made clear in this basis lacksquare

There are 228 operators in the general 2HDM EFT, where the low-energy theory contains the SM fields and new

Imposing a Z_2 symmetry on the fields will give 76 common operators in all types of 2HDMs, and model-specific

• The **Higgs basis** is useful when separating the SM d.o.f from the new Higgses where the characteristic scales might be

This is advantageous since operators only containing H_1 can contribute to physical parameters of the particles or SM

This provides a simple scaling between scattering processes involving any number of new Higgses and the SM fields

Thank you for listening!

INDIANA UNIVERSITY BLOOMINGTON

- Just recently in here, we calculate all couplings and masses of the physical scalars and SM particles, \bullet including exact formulas for the case of explicit CP-violation
- We show selected Feynman rules for the CP-conserving type-II 2HDM EFT in the alignment limit
- We've developed a FeynRules code that can work in many limits of the 2HDM EFT presented here, such \bullet as alignment limit, types of 2HDMs, CP-violation, etc.

Sidenote

arXiv:2411.07337 [hep-ph]

INDIANA UNIVERSITY BLOOMINGTON