A general-mass variable-flavor-number scheme for the $Z + b$ production at hadron colliders

 \mathbf{I}

Keping Xie

Michigan State University

PIKIMO Fall 2024, University of Michigan November 16, 2024

[2410.03876:](https://arxiv.org/abs/2410.03876) in collaboration with

M. Guzzi (KSU), P. Nadolsky (SMU), L. Reina (FSU), D. Wackeroth (U Buffalo)

 \bullet Home S-ACOT-MPS: **[HEPForge](https://sacotmps.hepforge.org/)** · Downloads The Simplified ACOT scheme with Massive Phase Space \bullet Manual ϵ Contact A single inclusive heavy-quark production

Main Goals

- Deal with the heavy-flavor in the General-Mass Variable-Flavor-Number Scheme
- Moving towards to the (N)NLO QCD calculations
- Simplify the implementation with the PDF subtraction formalism
- $Z + Q(Q = c, b)$ production at the LHC to probe the heavy-flavor (c, b) PDFs
	- Heavy-flavor in global QCD/PDF analyses
	- QCD dynamics at small and large x
	- Non-perturbative (intrinsic) charm/bottom component of the proton
- Already been done for the inclusive charm $_{[2108.03741,2109.10905,2203.05090]}$ $_{[2108.03741,2109.10905,2203.05090]}$ $_{[2108.03741,2109.10905,2203.05090]}$ $_{[2108.03741,2109.10905,2203.05090]}$ $_{[2108.03741,2109.10905,2203.05090]}$ and bottom $_{[2203.06207,Thesis]}$ $_{[2203.06207,Thesis]}$ $_{[2203.06207,Thesis]}$ $_{[2203.06207,Thesis]}$ production.

$Z + Q$ production

• The $Z + Q$ production probes both small and large x

$$
x_{1,2} = \frac{1}{\sqrt{s}} \left(\sqrt{p_{T,Z}^2 + M_Z^2} \exp(\pm y_Z) \right)
$$

\n
$$
x_{1,2} = \frac{1}{\sqrt{s}} \left(\sqrt{p_{T,Z}^2 + M_Z^2} \exp(\pm y_Z) \right)
$$

\n
$$
+ p_{T,Q} \exp(\pm y_Q) \right)
$$

\nsmall and large *x* PDFs are poorly
\ntriangleed by other experiments in global QCD
\nses of PDFs.
\nb configuration $3 < y_Z < 4$
\nSmall $p_T \left(\le m_Q \right) \implies x \sim 10^{-4}$.
\nLarge $p_T \left(> 40 \text{ GeV} \right) \implies x > 0.3$. The

- \bullet The small and large x PDFs are poorly constrained by other experiments in global QCD analyses of PDFs.
- LHCb configuration $3 < y_Z < 4$
	- Small $p_T (\lesssim m_Q) \implies x \sim 10^{-4}$.
	-

The small- and large- x uncertainty gets wide. The CT18 gluon PDF $[1912, 10053]$ Also see the PDF4LHC21 combination [\[2203.05506\]](https://arxiv.org/abs/2203.05506)

The importance of the $Z+Q$ production

- Modern PDF analyses extend on wide range of collision energies. Sensitive to mass effects, e.g., phase space suppression, large radiative corrections to collinear $Q\bar{Q}$ production. Magnitude comparable to NNLO and N3LO corrections.
- Natural to evaluate all fitted cross sections in a GMVFN scheme, which assumes that the number of (nearly) massless quark flavors varies with energy, and at the same time includes dependence on heavy-quark masses in relevant kinematical regions.
- $Z + b(\bar b)$ are dominant backgrounds for
	- SM $Z + (H \rightarrow b\bar{b})$
	- SUSY Higgs $+$ b-quark
	- New generation $Q \rightarrow Z + b$
- Probing this regime (and beyond, at future facilities) helps us shed light on the (intrinsic) heavy-flavor content of the proton, and on small- x dynamics.

LHC measurements: $Z + b$

[ATLAS 13 TeV, [2403.15093\]](https://arxiv.org/abs/2403.15093) [CMS 13 TeV, [2112.09659\]](https://arxiv.org/abs/2112.09659)

$Z + c$ to probe the HF content of the proton

6 / 15

GMVFN schemes in a nutshell

Heavy-flavor production dynamics is nontrivial due to the interplay of massless and massive schemes which are different ways of organizing the perturbation series

- Massive Scheme (Fixed-Flavor-Number Scheme): final-state HQ with $p_T \leq m_Q$
	- No heavy-quark PDF in the proton. Heavy flavors generated as massive final states.
	- \bullet m_Q is an infrared cut-off.
	- Power terms p_T^2/m_Q^2 are correctly accounted for in the perturbative series
- Massless Scheme (Zero-mass): $p_T \gg m_Q \gtrsim m_p$
	- Log terms $\alpha_s \log^n(p_T^2/m_Q^2)$ that spoil the convergence of the fixed-order expansion.
	- Heavy quark is considered essentially massless and enters also the running of α_s .
	- Need to resum these logs with DGLAP: initial-state logs resummed into a heavy-quark PDF, final-state logs resumed into a fragmentation function (FF).
- Composite Scheme (General-Mass Variable-Flavor-Number Scheme): the key mass dependence and efficiently resum collinear logs, so that they combine the FFN and ZM schemes together
	- \bullet a correct treatment of heavy flavors in DIS and pp
	- accurate predictions of key scattering rates at the LHC,
	- global analyses to determine proton PDFs

Main idea for S-ACOT-MPS (massive phase space)

 $ACOT = FC + FE - Sub$

- **Flavor Creation: full mass dependence**
- Flavor Excitation: approximate mass dependence
- Subtraction: well defined at the quark mass threshold, to avoid the double counting

FE and Subtraction can be facilitated by introducing residual PDFs:

$$
\tilde{f}_Q = \sum_n a_s^n \sum_{j=q,g} A_{Qj}^{(n)} \otimes f_j, \ \delta f_Q = f_Q - \tilde{f}_Q.
$$

 Available on HEPForge

Theoretical framework for $Z+Q$

The differential cross section for partonic scattering $i + j \rightarrow Z + Q + X$ can be written as

$$
d\sigma = G_{ij}\left(x_A, x_B, Q^2; \frac{\mu^2}{Q^2}, \frac{m_Q^2}{\mu^2}, \alpha_s, N_f\right)
$$

where the factorization gives

$$
G_{ij} = \sum_{k,m}^{N_f} \int_{x_A}^1 d\xi_A \int_{x_B}^1 d\xi_B f_{k/i}(\xi_A, Q^2) H_{km} \left(\frac{x_A}{\xi_A}, \frac{x_B}{\xi_B}\right) f_{m/j}(\xi_B, Q^2)
$$

And the perturbative expansion leads to

$$
G_{ij}(x_A, x_B) = \sum_{k=0} G_{ij}^{(k)}(x_A, x_B)
$$

$$
H_{km}(\widehat{x}_A, \widehat{x}_B) = \sum_{k=0} H_{km}^{(k)}(\widehat{x}_A, \widehat{x}_B)
$$

$$
f_{i/j}(\xi) = \delta_{ij} \delta(1 - \xi) + \sum_{k=1} A_{ij}^{(k)}(\xi)
$$

 $\widehat{x} = x/\xi$ $A_{ab}^{(k)}(k=1,2\cdots)$: Operator Matrix Elements $A_{hg}^{(1)}(\xi) = 2P_{Qg}^{(1)}(\xi) \ln(\mu^2/m_Q^2)$ for $g \to Q\bar{Q}$

Cancellation pattern at the lowest mandatory order

$$
\tilde{f}_Q = \sum_n a_s^n \sum_{j=q,g} A_{Qj}^{(n)} \otimes f_j, \ \delta f_Q = f_Q - \tilde{f}_Q.
$$

 10^{-5} 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ x $b(x, u = 100 \text{ GeV})$, 68%CI CT18NLO⁻ f_b $\tilde{f}_b^{(1)}$ (1) b \tilde{f}_b^{\setminus} (NLO) b $\delta f_b^{(1)}$ b $\delta f_b^{\rm (NLO)}$ \boldsymbol{b} $\tilde{f}_Q^{(1)} = \frac{\alpha_s}{2\pi}$ $\frac{\alpha_s}{2\pi} \log \frac{\mu^2}{m_{\zeta}^2}$ m_Q^2 $\left[P^{(1)}_{Qg} \otimes g\right](x,\mu^2)$

Subtracted and Residual PDFs are provided in the form of LHAPDF grids [\[HEPForge\]](https://sacotmps.hepforge.org/) Applicable for HQ related phenomenology.

The inclusive- b production

Matrix Elements taken from MCFM [\[1909.09117\]](https://arxiv.org/abs/1909.09117)

Application to the $Z + b$ production

The HQ mass m_b dependence is small

- \bullet Simplified ACOT (with initial b-quark as massless)
- ACOT complete mass dependent

$$
p_b = \frac{\sqrt{s}}{2} \left(x_{1,2} + \frac{m_b^2}{x_{1,2}s}, 0, 0, \pm x_{1,2} \mp \frac{m_b^2}{x_{1,2}s} \right), \frac{m_b}{\sqrt{s}} \le x_{1,2} \le \frac{1}{2} \left(1 + \sqrt{1 - \frac{4m_b^2}{s}} \right).
$$

Concluding remarks

- We applied the S-ACOT-MPS at NLO to $Z + Q$ production at the LHC
- \bullet S-ACOT-MPS developed at NLO: used to describe $Z+Q$ production differentially
- Technically accessible towards NNLO
- \bullet Direct access to c/b -PDF: constraining the heavy-flavor PDFs.
- Residual/Subtraction PDFs are provided in the form of LHAPDF grids [\[HEPForge\]](https://sacotmps.hepforge.org/) to allow users for multiple heavy-flavor phenomenology
- The GMVFN schemes in (N)NLO QCD calculations is simplified with the PDF subtraction formalism

\bullet Home

- \triangle Downloads
- $-Manual$

 \bullet Contact

S-ACOT-MPS:

The Simplified ACOT scheme with Massive Phase Space

A single inclusive heavy-quark production

· Authors: Keping Xie (PITT PACC), John Campbell (Fermilab), Pavel Nadolsky (SMU/MSU)

The (S-)ACOT scheme for the Z+b production at hadron colliders

· Authors: Marco Guzzi (KSU), Pavel Nadolsky (SMU/MSU), Laura Reina (FSU), Doreen Wackeroth (Baffalo), Keping Xie (MSU)

The $p_{T,b},\boldsymbol{\eta}_b$ distributions

